BC5: 2019

DESIGN GUIDE FOR THE USE OF GRADE B600

HIGH STRENGTH REINFORCEMENT IN REINFORCED CONCRETE STRUCTURES

BC 5: 2019

DESIGN GUIDE FOR THE USE OF GRADE B600 HIGH STRENGTH REINFORCEMENT IN REINFORCED CONCRETE STRUCTURES

Building and Construction Authority

DISCLAMINER

Whilst every effort has been made to ensure accuracy of the information contained in this design guide, the Building and Construction Authority ("BCA") makes no representations or warranty as to the completeness or accuracy thereof. Information in this design guide is supplied on the condition that the user of this publication will make their own determination as to the suitability for his or her purpose(s) prior to its use. The user of this publication must review and modify as necessary the information prior to using or incorporating the information into any project or endeavour. Any risk associated with using or relying on the information contained in the design guide shall be borne by the user. The information in the design guide is provided on an "as is" basis without any warranty of any kind whatsoever or accompanying services or support.

Nothing contained in this design guide is to be construed as a recommendation or requirement to use any policy, material, product, process, system or application and BCA makes no representation or warranty express or implied. NO REPRESENTATION OR WARRANTY, EITHER EXPRESSED OR IMPLIED OF FITNESS FOR A PARTICULAR PURPOSE IS MADE HEREUNDER WITH RESPECT TO INCLUDING BUT NOT LIMITED, WARRANTIES AS TO ACCURACY, TIMELINES, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COMPLIANCE WITH A PARTICULAR DESCRIPTION OR ANY IMPLIED WARRANTY ARISING FROM THE COURSE OF PERFORMANCE, COURSE OF DEALING, USAGE OF TRADE OR OTHERWISE, TO THE FULLEST EXTENT PERMITTED BY LAW. In particular, BCA makes no warranty that the information contained in the design guide will meet the user's requirements or is error-free or that all errors in the drawings can be corrected or that the drawings will be in a form or format required by the user.

In no event will BCA be responsible or liable for damages of any kind resulting from the use or reliance upon information or the policies, materials, products, systems or applications to which the information refers. In addition to and notwithstanding the foregoing, in no event shall BCA be liable for any consequential or special damages or for any loss of profits incurred by the user or any third party in connection with or arising out of use or reliance of this design guide.

Table of Contents

Foreword iii
Acknowledgement v
1 General 1
2 Material 1
3 Bar continuity and termination 2
4 Design issues 4
4.1 Flexural 5
4.2 Compression and Bending 9
4.3 Shear 14
4.4 Concrete strength 14
4.5 Development Length 14
4.6 Serviceability 18
4.7 Reinforcement limits 19
4.8 Moment redistribution 19
4.8.1 General 19
4.8.2 Comparison of design parameters between EC2 recommended values and the NA to SS EN 1992-1-1 20
4.9 Enhancement of concrete strain under pure compression 25
4.9.1 By confinement. 25
4.9.2 By time-dependant effects 32
5 Summary of design considerations 43
References 45

1. Flexural Design of beam 46
Example 1.1 : Design of a singly reinforced rectangular section 46
Example 1.2: Flexural design of doubly reinforced beam 51
2. Design chart for columns 52
3. Moment redistribution for beams 57
Example 3.1 Design of tension and compression reinforcement with concrete strength $f_{\mathrm{ck}}=25$ MPa. 57
Example 3.2 Design of tension and compression reinforcement for the beam with concrete strength $f_{\text {ck }}=60 \mathrm{MPa}$. 63
4. Prediction of confinement of concrete using the Eurocode model 68
Example 4.1. Designing confinement reinforcement required with $f_{c k}=40 \mathrm{MPa}$ 69
Example 4.2. Designing confinement reinforcement required with $f_{c k}=80 \mathrm{MPa}$ 70
Example 4.3. Designing confinement reinforcement as circular hoops, $f_{c k}=40 \mathrm{MPa}$ 70
Example 4.4. Designing confinement reinforcement as circular hoops, $f_{c k}=80 \mathrm{MPa}$ 71
5. Estimation of confining reinforcement amount to utilize the high strength reinforcement based on confinement mechanism given in EC2 72
Example 5.1: $f_{c k}=40 \mathrm{MPa} f_{y k}=600 \mathrm{MPa}$ 72
Example 5.2: $f_{c k}=80 \mathrm{MPa} f_{y k}=600 \mathrm{MPa}$ 73
6. Effect of creep and shrinkage on load redistribution in columns 74
Example 6.1: $f_{y}=600 \mathrm{MPa}$, concrete grade C30/37 using cement class N 74
Example 6.2 : $f_{y}=600 \mathrm{MPa}$, concrete grade C70/85 using cement class N 77

Foreword

The use of steel reinforcement with yield strength of 600 MPa is gaining popularity in Singapore. The use of Grade B600 reinforcement bars (rebars) in structural concrete offers several advantages. With a higher specified yield strength, f_{y}, the designer can reduce the cross-sectional area of required reinforcement, and save cost on material, shipping, and placement. The reduced area of reinforcement results in fewer bars and reduces reinforcement congestion often encountered in mat foundations, shear walls, beam-column joints, and many precast concrete elements. The reduction in reinforcement congestion facilitates concrete placement and consolidation, and leads to better quality construction, improved durability of the structure, and a reduction in construction time and cost.

However, there are also disadvantages in using Grade B600 rebars in structural concrete design. Using higher specified yield strength, f_{y}, may result in higher steel stress at service load condition and potentially cause wider cracks and larger deflections, which may be objectionable if aesthetics and water-tightness are critical design requirements. Also, with higher f_{y}, the required development length will be longer and may not be economical and practical for large size bars.

The current SS EN 1992-1-1 (EC2) code provisions for reinforced concrete (RC) structures limit the nominal yield stress, f_{y}, of longitudinal steel reinforcement to 600 MPa . The EC2 provides the principles and application rules on design but does not prescribe guidance or procedures to assist the designers. Unlike the common grade of steel of 500 MPa and below, there are also insufficient verifications of the design using the higher grade steel. The lack of information regarding the behaviour of concrete members reinforced with high-strength steel reinforcement hinders design engineers from using the full strength of the material.

This guide provides design provisions for the use of Grade B600 steel reinforcement for reinforced concrete structural members. This guide aims to address some situations in SS EN 1992-1-1 that require special deliberations or considerations. It also provides an overview of issues in the use of high strength steel reinforcement (having yield strength > 500 MPa). It includes recommendations on conformity compliance of connectors, ductility for moment redistribution, and use of confinement and/or time-dependant effects to increase the concrete strain for columns under pure compression loads. Examples are provided to
illustrate design procedures and proper application of the recommendations. Modifications to these design recommendations may be justified where the design adequacy within the scope of this guide is demonstrated by successful use, analysis, or test.

While this document aims to provide a guidance and addition considerations on the use of high strength steel reinforcement in reinforced concrete construction, the design of concrete structures shall still fully comply with SS EN 1992-1-1.

Acknowledgement

The Building and Construction Authority of Singapore (BCA) would like to thank the authors for developing this Guidebook.

Authors
Associate Professor Er. Dr. Tan Teng Hooi, (Author)
Dr. Nguyen Ngoc Ba (Co-author)
Associate Professor Dr. Li Bing (Co-author)

General

Limits by design codes on maximum values of yield stress of longitudinal reinforcing bars permitted for structural design have changed over time because of advances in metallurgy, production of tougher reinforcing bars, desire for cost reduction, and availability of experimental data to support the changes. Steel reinforcement with yield strength of 600 MPa is commercially available in Singapore and there is even a local producer for this grade. Its use is expected to be more wide-spread in Singapore in the near future

There are many potential benefits from the use of high-strength steel reinforcement in reinforced concrete construction in Singapore. These include less material, manpower reduction, reduced construction time, reduction of reinforcement congestion, lower cost etc. Such benefits serve to motivate the building authority to take the initiative to encourage the industry stake holders in using the high strength steel. A design guide culminating from this report is one of the initiatives.

The current SS EN 1992-1-1 (EC2) code provisions for reinforced concrete (RC) structures limit the nominal yield stress, f_{y}, of longitudinal steel reinforcement to 600 MPa . The EC2 provides the principles and application rules on design but does not prescribe guidance or procedures to assist the designers. Unlike the common grade of steel of 500 MPa and below, there are also insufficient verifications of the design using the higher grade steel. The lack of information regarding the behaviour of concrete members reinforced with high-strength steel reinforcement hinders design engineers from using the full strength of the material.

While this document aims to provide a guidance and addition considerations on the use of high strength steel reinforcement in reinforced concrete construction, the design of concrete structures shall still fully comply with SS EN 1992-1-1.

2 Material

The product specifications for reinforcement shall be based on the following:

- Rebar : SS 560 : 2016-Steel for the reinforcement of concrete - Weldable reinforcing steel - Bar, coil and decoiled.
- Mesh : SS 561 : 2010-Steel fabric for the reinforcement of concrete.

The Singapore Standard SS 560: 2016 specifies requirements for ribbed weldable reinforcing steel used for the reinforcement of concrete structures. The standard covers steel delivered in the form of bars, coils and decoiled products. The weldability requirements for all grades of steel
are specified in terms of the chemical composition, and in particular the carbon equivalent value. Steel bars produced by re-rolling finished products, or by rolling material of which the metallurgical history is not fully documented or not known, are not covered by this Singapore Standard.

SS 560: 2010 was revised to include Grade B600 steel. This revised standard is an adoption of BS $4449+$ A2 : 2009 'Steel for the reinforcement of concrete - Weldable reinforcing steel- Bar, coil and decoiled product - Specification' and is implemented with the permission of the British Standards Limited. The current standard SS 560:2016 contains provisions for both of 500 MPa and 600 MPa characteristic yield strength, but with different ductility characteristics. This standard has been written so that it can be used in conjunction with BS EN 10080 : 2005. BS EN 10080:2005 does not define steel grades or technical classes, and requires that technical classes should be defined in accordance with BS EN 10080: 2005, by specified values of $R_{e}, R_{m} / R_{e}, A_{g t}$, $R_{e, a c t} / R_{e, n o m}$ (where appropriate), fatigue strength, bend performance, weldability, bond strength, tolerances and dimensions.

It should be noted in accordance with SS 560 : 2016, purchasers specify reinforcing steel that has been manufactured and supplied, to conform with "Evaluation of Conformity" (Clause 8) through a recognised third party product certification scheme. As an alternative, Annex B provides a batch testing method for material which has not been produced under such a scheme.

3 Bar continuity and termination

For almost 100 years, construction practices in the building of concrete structures have focused on the use of steel reinforcement to transfer tension and shear forces. Lap splicing has become the traditional method of connecting the steel reinforcing bars, largely due to a misconception that lap splicing is "no-cost" splicing. Lap splicing requires the overlapping of two parallel bars. The overlap load transfer mechanism takes advantage of the bond between the steel and the concrete to transfer the load. The load in one bar is transferred to the concrete, and then from the concrete to the ongoing bar. The use of laps can be time consuming in terms of design and installation and can lead to greater congestion within the concrete because of the increased amount of rebar used. Lapped joints are also dependent upon the concrete for load transfer. For this reason, any degradation in the integrity of the concrete could significantly affect the performance of the joint.

Reinforcing bar couplers available in the market have come across with a solution for this complexity as it provides a greater ease in design and construction of reinforced concrete and
reduce the amount of reinforcement required. The strength of a mechanical splice is independent of the concrete in which it is located and will retain its strength despite loss of cover as a result of impact damage or seismic event. Different types of couplers are shown in Figure 3-1 :

Figure 3-1 Different types of couplers
(https://www.strukts.com/blog/2091/mechanical-couplers-for-bars/)
In EC2, the requirements on rebar lapping are covered in clause 8.7. However, while mechanical devices are allowed to transfer load, there is no guidance or requirements on the use of couplers. Hence, like the steel reinforcement, a product standard is required to ensure good and proper use of couplers. The standard ISO 15835 shall be adopted for that purpose. This standard specifies requirements for couplers to be used for mechanical splices in reinforced concrete structures under predominantly static loads. It specifies additional requirements for couplers to be used in structures subject to high-cycle elastic fatigue loading and/or to low-cycle elastic-plastic reverse loading. The Conformity assessment scheme in ISO 15835, similar to that specified in SS 560 : 2016 for the rebars, provides the rules for the certification and for the self-evaluation of couplers to be used for the mechanical splicing of steel reinforcing bars. It also includes requirements for the control of the manufacturing process of the couplers and for the verification of their conformity.

The ISO 15835: 2018 consists of the following 3 parts. It replaces the first edition (ISO 15835:2009) consisting only of 2 parts.

- ISO 15835-1:2018 Requirements
- ISO 15835-2:2018 Test methods
- ISO 15835-3:2018 Conformity assessment scheme.

For testing strength, ductility and slip under static loading, each test unit shall consist of couplers of the same splice type and size, and shall represent a maximum number of 10000 couplers.

ISO 15835-3:2018 Conformity assessment scheme specifies rules for the certification and for the self-evaluation of couplers to be used for the mechanical splicing of steel reinforcing bars. It includes requirements for the control of the manufacturing process of the couplers and for the verification of their conformity in the form of mechanical splices.

Evaluation of the compliance of the products to the requirements of ISO 15835-3 may be done by one of the following methods.

- Product certification, described in Clause 5, is made by a certification body who inspects the manufacturing facility and collects test samples at regular periods;
- Verification of lots, described in Clause 6, is made by agreement between the supplier and the purchaser, and involves only testing of the exact lot that is going to be delivered to the purchaser.

Product certification has 3 stages - Qualification testing, Continuous third party surveillance and Factory production control. Sampling plan for each is given.

Self-declaration of product conformity through the testing of delivery lots as per ISO/IEC 17050. The manufacturer shall hold a valid certificate as per Clause 5 for the main range of the same type of couplers. The manufacturer can then use this method to certify some lots of products that are not entirely covered by the scope of the certificate. This method should, however, not be used for the majority of the production of the manufacturer. It is intended for minor deviations from the scope of the certification.

4 Design issues

When used in reinforcement, Grade B600 steel has the potential to impact design provisions and performance in reinforced concrete construction. Design provisions for computing flexural strength, axial load capacity, and shear strength may need to be adjusted for application to members reinforced with Grade B600 steel.

4.1 Flexural

The strength of reinforced concrete members under flexural, axial, or combined flexural and axial loading is a key consideration as provisions for these considerations would directly establish the size of the members. Understanding potential changes in the strength and behaviour of reinforced concrete members is necessary to ascertain that Grade B600 reinforcement is safe and economical to use in practice.

Flexural strength design using Grade B600 steel reinforcement is no different from that for normal strength steel reinforcement. The flexural resistance of the sections could be accurately computed using the well-established strain compatibility analysis method where the steel stressstrain relationship is idealized as being elastic-perfectly plastic and the ultimate concrete compressive strain equals to 0.0035 for normal strength concrete up to C50/60 and reduced to as low as 0.0026 for high strength concrete (C90/115). The basic flexural design equations for rectangular sections, in both cases of singly reinforced section and section with compression reinforcement, as given below will be used in some examples to illustrate the flexure design of both normal strength steel reinforcement and Grade B600 steel reinforcement.

Singly reinforced rectangular section in bending at the ultimate limit state

Design equations for bending

Figure 4-1: Stress and strain distribution in a singly reinforced rectangular section
As per definition, a section is balanced if the concrete strain reaches $\varepsilon_{c u}$ simultaneously as the steel strain reaches design yield strain $\varepsilon_{y d}$, therefore the neutral axis depth for balance section at ultimate limit state is determined from the following equation:

$$
\frac{x}{d}=\frac{\varepsilon_{c u}}{\varepsilon_{c u}+\varepsilon_{y d}}
$$

For normal strength concrete up to $\mathrm{C} 50 / 60, \varepsilon_{c u}=0.0035$ thus for rebar grade B500 the design yield strain $\varepsilon_{y d}=0.00217$ and $x / d=0.617$, for rebar grade $B 600$ the design yield strain $\varepsilon_{y d}=0.0026$
and $x / d=0.573$. However to ensure rotation at plastic hinge location EC2 (Clause 5.6.3) requires the maximum ratio $x / d=0.45$ without moment redistribution for concrete class up to $C 50 / 60$, i.e steel strain $\varepsilon_{s}=0.0043$, and $x / d=0.35$ for higher strength concrete. Correspondingly, the steel strain ε_{s} will be varying from 0.0058 for $\mathrm{C} 55 / 67$ to 0.0048 for $\mathrm{C} 90 / 105$. These steel strains are well above the nominal yield strain of Grade B500 $\left(\varepsilon_{y}=0.0025\right)$ and Grade B600 ($\left.\varepsilon_{y}=0.003\right)$.

For equilibrium, the ultimate design moment shall be balanced by the moment of resistance of the section:

$$
M=F_{c c} z=F_{s t} z
$$

Equation 4-1
where z is the level arm between the resultant forces $F_{c c}$ and $F_{s t}$

$$
z=d-s / 2
$$

The resultant force of concrete $F_{c c}$ and depth of the rectangular stress block s are obtained from Figure 4-1 as follows:

$$
\begin{gathered}
F_{c c}=\eta f_{c d} b s=\eta \frac{\alpha_{\mathrm{cc}} f_{c k}}{\gamma_{\mathrm{c}}} b s \\
s=\lambda x
\end{gathered}
$$

The resultant force of steel

$$
F_{s t}=A_{s} f_{s} / \gamma_{s}
$$

Equation 4-5

According to Singapore National Annex (NA) to SS EN 1992-1-1, $\gamma_{c}=1.5, \gamma_{s}=1.15$ and $\alpha_{c c}$ can be taken as 0.85 for bending and compression. For concrete class up to C50/60 we have $\eta=1.0$ and $\lambda=0.8$, substitute into Equation 4-3 with s obtained from Equation 4-4, we have

$$
F_{c c}=1.0 \times \frac{0.85 f_{c k}}{1.5} b \times 0.8 x=0.453 f_{c k} b x
$$

and

$$
M=F_{c c} z=0.453 f_{c k} b x(d-0.4 x)
$$

Equation 4-7

Rearranging Equation 4-7 and substituting $K=M / b d^{2} f_{c k}$

$$
0.181(x / d)^{2}-0.453(x / d)+K=0
$$

Equation 4-8
solving this quadratic equation:

$$
x / d=1.25-\sqrt{1.5625-5.5147 K}
$$

As mentioned above, the maximum allowable ratio x / d without moment redistribution for normal strength concrete is 0.45 thus $K_{\text {bal }}=0.167$

If $x / d \leq 0.45$ or $K \leq 0.167$ the rebar has yielded and the area of rebar can be computed from equation

$$
\begin{array}{r}
\mathrm{M}=F_{s t z}=0.87 A_{s} f_{y k}(\mathrm{~d}-0.8 x / 2) \\
A_{s}=\frac{M}{0.87 f_{y k}(d-0.4 x)}
\end{array}
$$

Equation 4-10

Equation 4-11

Replacing $M=K b d^{2} f_{c k}$ to Equation 4-11 we have

$$
\begin{aligned}
& A_{s}=\frac{K b d^{2} f_{c k}}{0.87 f_{y k}(d-0.4 x)} \\
& \text { or } \frac{A_{s}}{b d}=\frac{K}{0.87(1-0.4 x / d)} \frac{f_{c k}}{f_{y k}}
\end{aligned}
$$

Equation 4-12

From the condition $x / d=0.45$ and $K=0.167$ we also have maximum reinforcement ratio for singly reinforced section $A_{s} / b d=0.234 f_{c k} / f_{y k}$

For higher concrete class, the values of λ and η shall be computed from equations (3.20) and (3.22) of EC2 as follows:

$$
\lambda=0.8-\left(f_{c k}-50\right) / 400, \eta=1.0-\left(f_{c k}-50\right) / 200
$$

from equilibrium of force we can obtain a general quadratic equation for x / d as follows

$$
\frac{\alpha_{\mathrm{cc}} \eta \lambda^{2}}{3}\left(\frac{x}{d}\right)^{2}-\frac{\alpha_{\mathrm{cc}} \eta \lambda}{1.5}\left(\frac{x}{d}\right)+K=0
$$

Equation 4-15

At maximum ratio $x / d=0.35$ we can obtain the corresponding factor K for different concrete classes with $\alpha_{c c}=0.85$ as shown in Table 4-1

Table 4-1 : Parameters λ, η, K for high strength concrete

$f_{c k}$	55	60	70	80	90
λ	0.7875	0.775	0.75	0.725	0.7
η	0.975	0.95	0.9	0.85	0.8
K	0.131	0.126	0.116	0.107	0.097

Replacing $x / d=0.35$ and K factor from Table 4-1 into equation 3-13 we can also determine maximum reinforcement ratio for singly reinforced section $A_{s} / b d$ for high strength concrete. Table 4-2 shows the maximum reinforcement ratio for singly reinforced section $A_{s} / b d$ for each
class of concrete with Grade B500 and Grade B600 reinforcement, assuming no moment redistribution.

Table 4-2 : Maximum reinforcement ratio for singly reinforced section without moment redistribution.

	Maximum reinforcement ratio for singly reinforced section 100 $A_{s} / b d$														
$f_{\text {ck }}(\mathrm{MPa})$	12	16	20	25	28	30	35	40	45	50	55	60	70	80	90
$f_{y \mathrm{k}}=500$ MPa	$\begin{array}{r} 0.5 \\ 6 \end{array}$	0.75	0.94	$\begin{array}{r} 1.1 \\ 7 \end{array}$	1.31	1.40	1.64	1.87	$\begin{gathered} 2.1 \\ 1 \end{gathered}$	2.34	1.93	2.02	2.17	2.29	2.33
$f_{y \mathrm{k}}=600$ MPa	0.4 7	0.62	0.78	0.9 8	1.09	1.17	1.37	1.56	$\begin{gathered} 1.7 \\ 6 \end{gathered}$	1.95	1.60	1.68	1.81	1.91	1.94

From the derivation of expressions for the design of singly reinforced concrete section, it appears that no modification of design equations is needed for use with Grade B600 reinforcement for strength design. However, the maximum reinforcement ratio that can be used for singly reinforced section without moment redistribution of Grade B600 reinforcement is smaller than that of Grade B500 reinforcement.

Rectangular section with compression reinforcement at the ultimate limit state

The design equations for rectangular section with compression reinforcement at the ultimate limit state for normal strength concrete can be found from Mosley et. al (2007) as follows:

$$
\begin{aligned}
A_{s}^{\prime} & =\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)} \\
A_{s} & =\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z_{b a l}}+A_{s}^{\prime}
\end{aligned}
$$

Equation 4-16

Equation 4-17

Figure 4-2 Stress and strain distribution in a doubly reinforced rectangular section

With the assumption that both compression and tension reinforcement have yielded, the condition for yielding of compression reinforcement is determined from the strain diagram in Figure 4-2 as follows:

$$
d^{\prime} / x<1-\varepsilon_{s c} / \varepsilon_{c u}
$$

For normal strength concrete $\varepsilon_{c u}=0.0035, x / d=0.45$ and Grade B500 steel has design yield strain $\varepsilon_{s c}=0.00217$ then

$$
d^{\prime} / x<1-0.00217 / 0.0035=0.38, \text { or } \quad d^{\prime} / d<0.171 \quad \text { Equation 4-19 }
$$

For grade B 600 steel $f_{y k}=600 \mathrm{~N} / \mathrm{mm} 2$, the design yield strain is $\varepsilon_{y d}=0.0026$ therefore the condition for yielding of the compression steel, with normal strength concrete $\varepsilon_{c u}=0.0035$, is

$$
d^{\prime} / x<1-0.0026 / 0.0035=0.257, \text { or } \quad d^{\prime} / d<0.116 \quad \text { Equation 4-20 }
$$

For high strength concrete, as $\varepsilon_{c u}$ varies with concrete strength, $d^{\prime} / x<1-\varepsilon_{s c} / \varepsilon_{c u}$ Equation 4-18 should be used directly to check the condition for yielding of compression reinforcement.

Sample calculations on flexural design of beam are provided in examples 1.1 and 1.2

4.2 Compression and Bending

In EC2, the maximum strain of concrete in axial compression is 0.0035 for grade up to C50/60 and this reduces with higher strength concrete to 0.0026 for C90/105 (Table 3.1 of SS EN 1992), therefore when a normal strength rebar is used as the longitudinal reinforcement, the strain of the steel bar will be able to reach compression yield before the concrete reaches its maximum strain. But when Grade B600 rebar with higher yield strain is used, it may not yield even when the concrete reaches the maximum strain at the extreme fibre. The situation is even more limiting under pure or predominantly axial compression where the concrete strain at peak stress is 0.002 for C50/60 concrete, increasing to 0.0026 for C90/105 concrete. Hence, the Grade B600 steel bars may not reach yield potential before the concrete reaches the maximum stress under pure compression unless very high strength concrete is used.

Figure 4-3 : EC2 stress-strain curves for concrete (a) Parabola-rectangle (b) Bi-linear stressstrain

In EC2, stress-strain relationships for the design of concrete are shown in Figure 4-3. The possible strain distributions in the ultimate limit state is shown in Figure 4-4. In EC2, for cross-sections that are subjected to bending and compression at the same time, the compressive strain in the concrete shall be limited to $\varepsilon_{c u 2}$ or $\varepsilon_{c u 3}$. However, cross-sections or part thereof are subjected to approximately concentric loading, the compressive strain should be limited $\varepsilon_{c 2}$ or $\varepsilon_{c 3}$.

A - reinforcing steel tension strain limit
B - concrete compression strain limit
C - concrete pure compression strain limit

Figure 4-4: Possible strain distributions in the ultimate limit state (EC2 Figure 6.1)

Figure 4-5: Concrete and rebar strains
In EC2, $\varepsilon_{c u 2}$ is 0.0035 for normal strength concrete (NSC) and reducing to 0.0026 for high strength concrete (HSC). As shown in Figure 4-5 and this compression strain of concrete for NSC is equal or higher than the design yield strain of steel of strength $f_{y}=700 \mathrm{MPa}$ or lower and hence the steel has the potential to reach the yield strength under bending and compression load. Similarly, this is also true for $f_{y}=600 \mathrm{MPa}$ for even HSC. As for pure compression load, if the strain of concrete $\varepsilon_{c 2}$ is equal or higher than the design yield strain of reinforcing bars for the case of steel with $f_{y}=460 \mathrm{MPa}$, the pure axial strength equation without influence of creep and drying shrinkage is

$$
P_{u D}=0.567 f_{c k}\left(A_{g}-A_{s t}\right)+0.87 f_{y k} A_{s t}
$$

Equation 4-21

However, if the strain of concrete $\varepsilon_{\mathrm{c} 2}$ is lower than the design yield strain of reinforcing bars, $\varepsilon_{y k d}$, for reinforcement equal or higher than 600 MPa yield strength, then it is not possible to realise all the potential strength of the steel reinforcement. This is also true for 500 MPa yield strength steel if concrete strength $f_{c k}$ is less than 55 MPa . Therefore, when the influence of creep and drying shrinkage is neglected, the pure axial strength equation should be modified as following:

$$
P_{u D}=0.567 f_{c k}\left(A_{g}-A_{s t}\right)+E_{s} \varepsilon_{c 2} A_{s t} \quad \text { for } \varepsilon_{c 2}<\varepsilon_{y k d}
$$

Figure 4-6 Normalized axial strength according to axial reinforcement ratio for (a) $f_{y}=500$ MPa , (b) $f_{y}=600 \mathrm{MPa}$ and (c) $f_{y}=700 \mathrm{MPa}$

Figure 4-6 shows the ratio of axial strength plotted against the concrete strength. The ratio of axial strength is calculated by the value of P_{ud} in Equation 4-22 divided by that in Equation 4-21. The analysis parameters were the compressive strength of concrete f_{ck} of 20 to 90 MPa , the yield strength of steel bars of $500 \mathrm{MPa}, 600 \mathrm{MPa}$ and 700 MPa , and the axial reinforcement ratio of 1% -4\%.

As shown in Figure 4-6, the axial strength ratio decreases as the axial reinforcement ratio increases, decreases as the yield strength of reinforcing bars increases, and increases as the concrete compressive strength increases.

In case of rebar with 500 MPa yield strength, when the compressive strength of concrete is less than 55 MPa , the normalised axial strength is below unity. This is because even though the value of $\varepsilon_{c 2}$ increases with concrete strength, for concrete strength lower than 55 MPa , the value of $\varepsilon_{c 2}$ is less than the design yield strength of Grade B500 MPa ($\varepsilon_{c 2}=0.00217$). Similarly, rebar with >600 MPa yield strength, the normalised axial strength for all concrete strength is below unity.

The above results are based on the analysis without considering the creep and the drying shrinkage in the reinforced concrete columns under the pure axial force. The effect of creep and shrinkage in the concrete will cause redistribution of forces between the rebar and concrete; the stress and strain in the rebar will be increased as a result. TTK (2017) proposed that a simple formula as shown in (Equation 4-23) can be used to represent the hypotheses:

$$
\left.\varepsilon_{c 2, \text { long }}=\left(1+\emptyset_{m c s)}\right) \varepsilon_{c, \text { sust }+(} \varepsilon_{c 2}-\varepsilon_{c, \text { sust }}\right)=\emptyset_{m c s} \varepsilon_{c, \text { sust }}+\varepsilon_{c 2}
$$

Equation 4-23

$\varepsilon_{c 2, \text { long }}$ is the concrete strain in considering creep and drying shrinkage; $\emptyset_{m c s}$ is the final increase coefficient in considering creep, drying shrinkage and rebar ratio; $\varepsilon_{c, \text { sust }}$ is the initial strain when the sustained load is applied.

If the fixed load was assumed to be 0.3 times of the factored load, $\varepsilon_{c, \text { sust }}$ could become 0.0006 or 0.3 times of the $\varepsilon_{c 2}$ which is 0.002 for C 50 and below concrete.

The coefficient $\varnothing_{\text {mcs }}$ was taken as 2.0 and the additional strain would be 0.0012 . The total strain of the concrete then became 0.0032 from the above equation. This value exceeds the design yield strain of 0.0026 of rebar with the yield strength of 600 MPa . Therefore, if the effects of creep and drying shrinkage are considered, the calculation formula of the pure axial strength in the Eurocode design could be applicable up to the Grade B600 rebar for all strength grades of concrete.

Similarly, SAH (2016) reported that the value of the additional strain can be assumed to be around 0.0005 and together with $\varepsilon_{c 2}$ of 0.0022 for $\mathrm{C} 55 / 67$ concrete gives a higher strain than design yield strain of 0.0026 for Grade B600 rebar.

The effects of creep and drying shrinkage would increase the concrete strain thereby enabling the steel to sustain a higher strain to reach yield. This phenomenon will be studied in more detail in the later section (see 4.9.1.1)

Under combined bending and compression, the maximum concrete compressive strain for normal strength concrete is higher than the strain at yield for Grade B600 steel reinforcement. Hence, there is no limit placed on the steel reinforcement to reach yield potential. The design of columns will not be different from those for the lower strength steel. Some design charts (Charts 2.1 to 2.8) for rectangular columns are created in the Examples section for concrete strengths of C28/35 and C90/105.

4.3 Shear

To avoid abrupt shear failure due to concrete crushing before the yielding of shear reinforcement and to control the diagonal crack width, it is recommended that the design strength of shear reinforcement of RC beams be limited. Based on limited available experimental study, the $f_{y w k}$ be limited to 500 MPa for shear reinforcement. Similarly, owing to the lack of research data, f_{yt} should also be limited to 410 MPa for shear reinforcement designed for torsion.

4.4 Concrete strength

It is considered advantageous to use high-strength concrete in members that will use highstrength reinforcement. High concrete strength will reduce the required development and splice lengths of reinforcement, improve deformation capacity of flexural members, increase the shear strength of members, improve the strength of columns with high axial loads or combined axial load and flexure, increase the shear strength of joints in special moment frames, and reduce deflections (ATC-115(2014)).

4.5 Development Length

Lap splice issue
Developing the proper length of concrete-embedded rebar is crucial for obtaining its full tensile capacity. If the distance is less than the defined development length, the bar will pull out of the concrete. According to EC2, the development length concept is based on the attainable average
bond stress over the length of embedment of the reinforcement. The development length is a function of steel bar yield stress, concrete compressive strength, and bar diameter. High strength concrete will reduce the required development and splice lengths due to the improved bond between concrete and rebar.

As the required anchorage and lap lengths are proportional with the stress in the reinforcement, higher yield strength reinforcement requires longer anchorage and lap lengths compared with lower yield strength reinforcement. In some cases, the required lap length of high strength rebar makes it unrealistic to use conventional lapping for connection of large diameter reinforcement.

Table 4-3 shows the Anchorage and lap lengths of Grade B600 reinforcement for different concrete classes, assuming the stress in the reinforcement reaches design stress of $522 \mathrm{~N} / \mathrm{mm}^{2}$, the concrete cover to all sides and distance between rebar are not less than 25 mm and confinement effect is not considered ($\alpha_{3}=\alpha_{4}=\alpha_{5}=1.0$). The anchorage and lap length of rebar in compression in this table shall be multiplied with a coefficient of 1.09 for rebar with 40 mm diameter. The values in Table 4-3 are rounded up to the nearest 10 mm .

Table 4-3 : Anchorage and lap lengths of Grade B600 reinforcement

Compression and tension Splice Development (Mechanical Couplers)

Grade B600 rebars require long anchorage and splice lengths. Based on EC2 formulae the anchorage and splice lengths of Grade B600 would be 20% longer than the Grade B500 rebars, which may be uneconomical or impractical, thus the designer may consider using mechanical splices and headed bars.

4.6 Serviceability

Deflection and cracking

As stated in the EC2 Commentary (2008) for a stress level of $200 \mathrm{~N} / \mathrm{mm}^{2}$ there is a probability of 95% that a maximum crack width smaller than 0.3 mm occurs, this also imply that the formulas for calculation of crack width shall aim at controlling the stress in tensile steel around $200 \mathrm{~N} / \mathrm{mm}^{2}$ if the allowable width of crack is 0.3 mm , therefore there is no gain in performance under service condition when using high strength steel instead of normal strength steel. However any reduction in steel area would lead to higher steel stress under the same service condition, resulting in wider cracks than section with more steel area. The designer should make direct calculations to check the crack width under service condition.

To provide crack control at a reasonable bar spacing for members with increased cover, it will be necessary to limit the steel stress at service load to less than 310 MPa (up to 60% of f_{y}) recommended by EC2.

4.7 Reinforcement limits

Although no experimental validation is available, minimum reinforcement in accordance with EC2 provisions is deemed appropriate with Grade B600 reinforcement. To control cracking, as required by clause 7.3.1 (1) of the code, the minimum reinforcement area shall satisfy equation (7.1) as follows: $A_{s, \min } \sigma_{s}=k_{c} k f_{c t, e f f} A_{c t}$. In this equation, σ_{s} is the maximum stress permitted in the reinforcement immediately after formation of the crack. The code states that this value "may be taken as the yield strength of the reinforcement, $f_{y k}$. A lower value may be needed to satisfy the crack width limits according to the maximum bar size or spacing (see 7.3.3 (2))". When using Grade B600, if σ_{s} is taken as $f_{y k}$ then the required value of $A_{s, \min }$ become small. Hence, it is not recommended to use the yield strength $f_{y k}$ for $\sigma_{s .}$. It should be noted that in the calculation of crack width according to section 7.3.4 of the code, the crack width does not depend on yield strength of the reinforcement but only on the area and diameter of rebar.

To prevent a brittle failure and also to resist forces arising from restrained actions, the longitudinal reinforcement area of a beam or slab shall not be less than $A_{s, \text { min }}=0.26 \frac{f_{c t m}}{f_{y k}} b_{t} d$ but not less than $0.0013 b_{t} d$. The percentage of shear reinforcement in beam shall not be less than $\rho_{w, \text { min }}=\left(0.08 \sqrt{f_{c k}}\right) / f_{y k}$

For columns EC2 requires a minimum amount of longitudinal reinforcement of $0.2 \% A_{g}$ or 0.1 $N_{e d} / f_{y d}$ whichever is greater, with A_{g} is gross cross-section area of column, $N_{e d}$ is the axial force in the column.

4.8 Moment redistribution

4.8.1 General

Moment redistribution often provides for reserve capacity in members (or structures) in the event of overload. At present, no test data are available to judge if moment redistribution is applicable to members with Grade B600 reinforcements.

The neutral axis depth is considered the best parameter for quantifying the moment redistribution. EC2 states the permissible amount of redistribution depends on the tensile strain of the longitudinal reinforcement at the extreme layer, with the maximum amount being 30%,
but it restricts the limitation of neutral axis depth to the effective depth x_{l} / d to a small value, intend to increase the maximum strain of tension reinforcement to be considered sufficient for rotational capacity.

4.8.2 Comparison of design parameters between EC2 recommended values and the NA to SS EN 1992-1-1

The EC2 allows the use of rebar yield strength of up to 600 MPa and a moment redistribution up to 30% for class B and C and up to 20% for class A reinforcement. In Clause 5.5, a different ratio of the redistributed moment to the elastic bending moment, δ, is stipulated for various steel Classes A, B and C . The ratio of neutral axis depth at ultimate limit state after redistribution, x_{u}, to the effective depth, d, is a direct factor to control the δ to ensure sufficient ductility for rotational capacity.

The Singapore NA to EC2 have allowed the use of rebar strength up to 600 MPa but it only specified the values of parameters for calculation of moment redistribution for steels with $f_{y k} \leq$ 500 MPa . For steel with $f_{\mathrm{yk}}>500 \mathrm{MPa}$ it is only stated that more restrictive values than those given for steels with $f_{\mathrm{yk}} \leq 500 \mathrm{Mpa}$ may need to be used.

Table 4-4 shows the comparison of moment redistribution and design parameters between EC2 recommended values and the NA to SS EN 1992-1-1 Classes B and C and concrete class up to C50/60.

Table 4-4 Moment redistribution and design parameters for concrete class up to C50/60 and reinforcement class B and C

Redistribution (\%)	δ	x_{u} / d	$\varepsilon_{s u}$	$K_{\text {bal }}$
Based on EC2 (k1 = 0.44, k2 = 1.25)				
0	1	0.448	0.0043	0.167
5	0.95	0.408	0.0051	0.155
10	0.9	0.368	0.0060	0.142
15	0.85	0.328	0.0072	0.129
20	0.8	0.288	0.0087	0.116
25	0.75	0.248	0.0106	0.101
30	0.7	0.208	0.0133	0.086
Based on NA to SS EN 1992-1-1 ($\left.k_{1}=0.4, k_{2}=1.0\right)$				
0	1	0.45	0.0043	0.167

5	0.95	0.45	0.0043	0.167
10	0.9	0.45	0.0043	0.167
15	0.85	0.45	0.0043	0.167
20	0.8	0.4	0.0053	0.152
25	0.75	0.35	0.0065	0.136
30	0.7	0.3	0.0082	0.120

Note: For class A reinforcement, maximum percentage of redistribution is 20% only.
In Table 4-4 $K_{b a l}$ is the ratio defined as follow:

$$
K_{b a l}=M_{b a l} / b d^{2} f_{c k}
$$

in which: $M_{b a l}$ is the maximum moment of resistant for a singly reinforced section
d is the effective depth of the section
b is the width of the section
$f_{c k}$ is the characteristic cylinder strength of concrete
It can be seen from Table 4-4 that the EC2 recommendations require more ductile behaviour for moment redistribution than NA to SS EN 1992-1-1 does. For example at 15% moment redistribution, the reinforcement should reach a strain not less than 0.0072 compared with only 0.0043 in SS EN 1992-1-1. As the parameters k_{1} and k_{2} in SS EN 1992-1-1 only recommended for steel with $f_{y k} \leq 500 \mathrm{MPa}$ it is suggested that for steel with $f_{y k}>500 \mathrm{MPa}$ the parameters recommended by EC2 should be used.

For higher strength concrete ($f_{c k}>50 \mathrm{MPa}$) the parameters in Table 4-4 will be changed according to the concrete strength as can be seen in Table 4-5. Figure 4-7 shows the variation of parameters $x_{w} / d v$ v. ratio of the redistributed moment to the elastic bending moment δ for different concrete classes based on moment redistribution parameters recommended by EC2, while Figure 4-8 shows x_{u} / d vs. δ relationship followed Singapore Annex to EC2.

Figure 4-7 The ratio of x_{w} / d for moment redistribution design as recommended by EC2

Figure 4-8 The ratio of x_{u} / d for moment redistribution design based on Singapore Annex to EC2

Figure 4-9 The strain at tension reinforcement $\varepsilon_{s u}$ vs δ as recommended by EC2

Figure 4-10 The strain at tension reinforcement $\varepsilon_{s u} v s \delta$ relationship based on Singapore Annex to EC2

Figure 4-9 shows the strain at tension reinforcement $\varepsilon_{s u}$ vs. δ relationship based on moment redistribution parameters recommended by EC2, the required strain at tension reinforcement for high strength concrete (HSC) members with class higher than C50/60 is significantly higher compared with that for normal strength concrete members for the same ratio of the redistributed moment to the elastic bending moment. On the other hand, the strain at tension reinforcement $\varepsilon_{\text {su }}$ computed based on Singapore Annex to EC2 as shown in Figure 4-10 is much smaller than that recommended by EC2. In other words, for HSC, the EC2 recommended parameters to design for moment redistribution would result in higher ductility or rotational capacity compared to those stipulated by UK and Singapore Annex.

It should be noted that for HSC the required strain of tension reinforcement at ultimate limit state exceeds 0.015 for 25% and 30% moment redistribution based on parameters recommended by EC2. Such a high value is not recommended in US practice (ACI ITG-6R-10), therefore it is recommended to limit the redistribution of moment in HSC to 20\% only.

Table 4-5 Parameters for moment redistribution design for HSC

δ	$f_{\text {ck }}=55 \mathrm{MPa}$		$f_{\text {ck }}=60 \mathrm{MPa}$		$f_{\text {ck }}=70 \mathrm{MPa}$		$f_{\text {ck }}=80 \mathrm{MPa}$		$f_{\text {ck }}=90 \mathrm{MPa}$	
	x_{u} / d	$K_{\text {bal }}$	x_{l} / d	$K_{\text {bal }}$	x_{L} / d	$K_{\text {bal }}$	x_{u} / d	$K_{b a l}$	x_{u} / d	$K_{\text {bal }}$
Based on EC2 recommended parameters ($\mathrm{k}_{3}=0.54, \mathrm{k}_{4}=1.25\left(0.6+0.0014 / \varepsilon_{\mathrm{cu}}\right)$)										
1.00	0.350	0.131	0.339	0.123	0.326	0.114	0.323	0.107	0.323	0.102
0.95	0.313	0.119	0.302	0.111	0.291	0.103	0.288	0.097	0.288	0.092
0.90	0.275	0.107	0.265	0.099	0.256	0.092	0.253	0.086	0.253	0.082
0.85	0.237	0.093	0.228	0.087	0.220	0.080	0.218	0.075	0.218	0.071
0.80	0.198	0.080	0.192	0.074	0.185	0.068	0.183	0.064	0.183	0.060
0.75	0.160	0.065	0.155	0.061	0.149	0.056	0.148	0.052	0.148	0.049
0.70	0.122	0.051	0.118	0.047	0.114	0.043	0.113	0.040	0.112	0.038
Based on NA to SS EN 1992-1-1 ($\left.k_{3}=0.4, k_{4}=0.6+0.0014 / \varepsilon_{c u}\right)$										
1.00	0.350	0.131	0.350	0.126	0.350	0.116	0.350	0.107	0.350	0.097
0.95	0.350	0.131	0.350	0.126	0.350	0.116	0.350	0.107	0.350	0.097
0.90	0.350	0.131	0.350	0.126	0.350	0.116	0.350	0.107	0.350	0.097
0.85	0.350	0.131	0.350	0.126	0.350	0.116	0.350	0.107	0.350	0.097
0.80	0.350	0.131	0.350	0.126	0.350	0.116	0.350	0.107	0.350	0.097
0.75	0.334	0.126	0.322	0.118	0.311	0.105	0.308	0.095	0.307	0.087

0.70	0.286	0.111	0.276	0.103	0.266	0.092	0.264	0.083	0.264	0.076

Comparing Singapore NA to SS EN 1992-1-1 and EC2 recommendations on moment redistribution, section designed according to EC2 recommendation will have more ductile or more rotational capacity. With shallower depth of neutral axis, it will ensure reinforcement will yield before concrete reaches ultimate strain 0.0035 .

For steel stronger than B500, it is recommended that the parameters in Clause 5.5(4) on moment redistribution as suggested by the EC2 to be used instead of those given in the NA to SS EN 1992-1-1.

Sample calculations on moment redistribution for beams are provided in examples 3.1 and 3.2

4.9 Enhancement of concrete strain under pure compression

As explained in Section 4.2, when normal strength steel is used as the main reinforcement for column, the yield strain of the rebar is equal or lower than the strain of concrete under pure compression and both materials can reach the full potential strength. But, when the high strength steel with a higher yield strain is used, it may not yield even when the concrete reaches the maximum stress. In order to reach the yield potential of the steel reinforcement, the concrete compression strain has to be increased. The increase can be attained by either confinement or time-dependant effects.

4.9.1 By confinement

4.9.1.1 Concrete Confined by Spiral Reinforcement

Figure 4-11 shows the mechanism of passive confinement by reinforcements on RC circular columns and the formation of confining pressure due to hoop tension.

Figure 4-11: Effectiveness of Circular Confinement

Passive confinement relies on dilation of the core concrete as axial stress reaches and surpasses the unconfined concrete stress capacity. Confinement would be less effective for high-strength concrete than for normal-strength concrete. Concrete axial strength and strain capacity can be increased by applying compressive stresses in the directions transverse to the axial loading direction.

A more practical approach for application in concrete structures is to use transverse reinforcement to resist the dilation that occurs naturally when concrete is compressed.

Transverse reinforcement in a column serve three functions:

- Lateral support to the longitudinal reinforcement
- Confinement to the core concrete when the load supported by the column approaches it axial strength
- Shear reinforcement when the column is subjected to shear

Table 4-6 and Table 4-7 summarise the equations proposed by different investigators to determine the peak strength and the corresponding strain enhancement due to the effects of circular confinement respectively.

Table 4-6: Strength Enhancement of Circular Confinement

Strength Enhancement of Circular Confinement	
$\frac{f_{c c}^{\prime}}{f_{c o}^{\prime}}=1+K_{1} \frac{f_{t}}{f_{c o}^{\prime}}=1+K_{1} \frac{\rho_{s} f_{y h}}{2 f_{c o}^{\prime}}$	Equation 4-24
Researcher	$K_{\mathbf{1}}$
Richard et al. (1929)	4.1
Balmer (1949)	5.6
Iyenger et al. (1970)	$4.6\left(1-\frac{s}{d_{s}}\right)(\mathrm{MPa})$
Fafitis and Shah (1985)	$\frac{94}{\sqrt{f_{y h}}}\left(1-\frac{s 15}{2 d_{s}}\right)(\mathrm{MPa})$
Watanabe et al. (1980)	$\frac{14.3}{\sqrt{\rho_{s}^{\prime} f_{y h}}}$
Sheikh and Uzumeri (1982)	

Mander et al. (1984)	$5.5 K_{e}$

Table 4-7 : Strain Enhancement at Peak Stress due to Circular Confinement

Strain Enhancement at Peak Stress of Circular Confinement	
$\frac{\varepsilon_{c c}}{\varepsilon_{c o}}=1+K_{2} \frac{f_{t}}{f_{c o}^{\prime}}=1+K_{2} \frac{\rho_{s} f_{y h}}{2 f_{c o}^{\prime}}$	Equation 4-25
Researcher	K_{2}
Iyenger et al. (1970)	$46\left(1-\frac{s}{d_{s}}\right)$
Fafitis and Shah (1985)	15
Watanabe et al. (1980)	$\frac{914}{\sqrt{f_{y h}}}\left(1-\frac{s}{2 d_{s}}\right)(\mathrm{MPa})$
Mander et al. (1984)	$27.5 K_{e}$

4.9.1.2 Concrete Confined by Rectangular Reinforcement

The effectiveness of confinement in rectangular reinforcement is lesser than that for circular transverse steel, as explained in the theory section. As the hoops are pushed outward, the confinement on the sides of the rectangular hoops is limited and primarily only from bending stiffness; effective confinement only occurs at the corners of the hoops, as shown in Figure 4-12. Thus, passive confinement is mainly achieved by the diagonal expansion of core concrete. The following sections discuss the available stress-strain relationships for rectangular hoops with perimeter and internal ties.

Figure 4-12: Effective Confinement of Rectangular Reinforcement

Cover concrete starts to spall at longitudinal strain around 0.004 evident by vertical splitting of the cover concrete and a reduction in load resistance. Failure occurs when the perimeter hoops fracture, accompanied by buckling of the longitudinal reinforcement and partial straightening of the 90 degree hooks on crossties of columns. The failure sequence is fairly typical for confined columns loaded monotonically in compression. Closely spaced transverse reinforcement acts to confine the core, imparting enhanced longitudinal strain capacity. It is established that rectangular reinforcement is less as effective as the circular spirals.

4.9.1.3 Prediction of confinement of concrete using the Eurocode model

According to EN 1992-1 the stress-strain curve of confined concrete can be represented by the same parabola-rectangular curve as the unconfined concrete but with increased characteristic strength of confined concrete as shown in equation (3.24) and (3.25) of the code and reproduced herewith.

$$
\begin{array}{ll}
f_{c k, c}=f_{c k}\left(1.000+5.0 \sigma_{2} / f_{c k}\right) \text { for } \sigma_{2} \leq 0.05 f_{c k} & \text { Equation 4-26 } \\
f_{c k, c}=f_{c k}\left(1.125+2.50 \sigma_{2} / f_{c k}\right) \text { for } \sigma_{2}>0.05 f_{c k} & \text { Equation 4-27 }
\end{array}
$$

and the strain at maximum stress $\varepsilon_{c 2, c}$ and ultimate strain $\varepsilon_{c u 2, c}$ are given in equation (3.25) and (3.26) of the code as

$$
\begin{array}{ll}
\varepsilon_{c 2, c}=\varepsilon_{c 2}\left(f_{c k, c} / f_{c k}\right)^{2} & \text { Equation 4-28 } \\
\varepsilon_{c u 2, c}=\varepsilon_{c u 2}+0.2 \sigma_{2} / f_{c k} & \text { Equation 4-29 }
\end{array}
$$

where σ_{2} is the effective lateral compressive stress at the ULS due to confinement.
$\varepsilon_{c 2}$ and $\varepsilon_{c u 2}$ are taken from table 3.1 of EN 1992-1 depending on concrete compressive strength, $f_{c k}$.

EN 1992-1 does not give any details how to determine the parameter σ_{2} but it is given in EN 1998-3, applicable to rectangular section, as follows:

$$
\sigma_{2}=\alpha \rho_{s x} f_{y w}
$$

Equation 4-30
where $\rho_{s x}$ is the ratio of volume of transverse reinforcement to the volume of core concrete;
$f_{y w}$ is the stirrup yield strength, and α is the confinement effectiveness factor

For rectangular section

$$
\alpha=\left(1-\frac{s}{2 b_{0}}\right)\left(1-\frac{s}{2 h_{0}}\right)\left(1-\frac{\sum b_{i}^{2}}{6 h_{0} b_{0}}\right)
$$

where s is the spacing of transverse reinforcement,
b_{0} and h_{0} are the width and depth of the core concrete, measured to the centre line of perimeter link, respectively, and
b_{i} is the distance between consecutive engaged bars as illustrated in Figure 4-13.

Equation 4-30 can be extended to circular section with the confinement effectiveness factor determined from the following equation (EN 1998-1)
for circular hoops

$$
\alpha=\left(1-\frac{s}{2 D_{0}}\right)^{2}
$$

Equation 4-32
for circular spirals

$$
\alpha=\left(1-\frac{s}{2 D_{0}}\right)
$$

Equation 4-33
where D_{0} is the diameter of the core concrete, measured to the centre line of the hoops or spirals.

Figure 4-13 Confinement of concrete core in rectangular section

Sample calculations on confinement of concrete using the Eurocode model are provided in examples 4.1 to 4.4.

4.9.1.4 Estimation of confining reinforcement amount to utilize the high strength reinforcement based on confinement mechanism given in EC2

Considering a column subjected to concentric loading. Without considering the effect of creep and shrinkage the pure axial strength of the column is computed based on EC2 as rewritten below

$$
P_{u D}=0.567 f_{c k}\left(A_{g}-A_{s t}\right)+E_{s} \varepsilon_{c 2} A_{s t} \quad \text { for } \varepsilon_{c 2}<\varepsilon_{y k d}
$$

To fully utilize the high strength reinforcement, confinement from transverse reinforcement can be introduced so that the column can be loaded beyond the maximum unconfined strength so that the rebar can reach yield strength. However, beyond the unconfined strength, the concrete cover would be lost through spalling. Hence, the axial strength of the confined column in this stage is computed as

$$
P_{\mathrm{ud}, \mathrm{c}}=0.567\left(A_{c}-A_{\mathrm{st}}\right) f_{\mathrm{ck}, \mathrm{c}}+0.87 A_{s} f_{\mathrm{yk}}
$$

where

- $f_{c k, c}$ is the maximum confined concrete stress;
- A_{c} is the area of core concrete, measured to centre line of the perimeter hoops;

To maintain the axial strength of the column at least equal to the unconfined strength, we can determine the maximum confined concrete stress $f_{c k, c}$ from the condition $\mathrm{P}_{0, \mathrm{c}}=\mathrm{P}_{0}$ as follows

$$
0.567\left(A_{g}-A_{s t}\right) f_{c k}+A_{s t} E_{s} \varepsilon_{c 2}=0.567\left(A_{c}-A_{s t}\right) f_{c k, c}+0.87 A_{s} f_{y k} \quad \text { Equation 4-35 }
$$

However the strain at maximum confined concrete stress $\varepsilon_{c 2, c}$ also need to be not less than the design yield strain of the reinforcement $\varepsilon_{y \mathrm{kd}}$. According to EN 1992-1-1 $\varepsilon_{c 2, c}=\varepsilon_{c 2}\left(f_{\mathrm{ck}, \mathrm{c}} / f_{\mathrm{ck}}\right)^{2}$ therefore this strain condition can be expressed as

$$
\frac{\varepsilon_{c 2}}{\varepsilon_{y k d}}\left(\frac{f_{c k, c}}{f_{c k}}\right)^{2}=1 \quad \text { or } f_{c k, \mathrm{c}}=f_{c k} \sqrt{\frac{\varepsilon_{y k d}}{\varepsilon_{c 2}}} \quad \text { Equation 4-36 }
$$

The required maximum confined concrete stress $f_{c k, c}$ shall be the greater value obtained of those from Equation 2-27 and Equation 2-28. Once $f_{c k, c}$ is determined, the required confining stress σ_{2} can be computed based on Equation 4-30 and the amount of confining reinforcement can be derived depending on configuration and yield strength of transverse reinforcement. The derivation of amount of confining reinforcement for some particular cases is as follows:

Case 1: For a square section confined with 1 Perimeter hoop $+n$ Tie equally distributed in each direction, using the same hoop diameter:
$b_{i}=\left(b_{0}-d_{s}-d_{1}\right) /(n+1)$ with d_{1} is the diameter of longitudinal rebar and d_{s} is the diameter of transverse rebar, for simplification on conservative side take $b_{i}=b_{0} /(n+1)$ thus

$$
\begin{array}{cc}
\alpha=\left(1-\frac{s}{2 b_{0}}\right)^{2}\left(1-\frac{2}{3(n+1)}\right) & \text { Equation 4-37 } \\
\rho_{s x}=\left(4 b_{0} A_{s h}+2 n b_{0} A_{s h}\right) / s b_{0}^{2}=\left[A_{s h}(4+2 n)\right] / s b_{0} & \text { Equation 4-38 }
\end{array}
$$

substitute $\rho_{s x}$ and α into Equation 4-30 yields

$$
\begin{gather*}
\frac{\sigma_{2}}{f_{y w}}=\left(1-\frac{s}{2 b_{0}}\right)^{2}\left(1-\frac{2}{3(n+1)}\right)\left[A_{s h}(4+2 n)\right] / s b_{0} \\
\frac{\sigma_{2} b_{0}}{\left(1-\frac{2}{3(n+1)}\right)\left[A_{s h}(4+2 n)\right] f_{y w}} s=1-\frac{s}{b_{0}}+\left(\frac{s}{2 b_{0}}\right)^{2} \\
1-\left[\frac{1}{b_{0}}+\frac{\sigma_{2} b_{0}}{\left(1-\frac{2}{3(n+1)}\right)\left[A_{s h}(4+2 n)\right] f_{y w}}\right] s+\frac{1}{4 b_{0}^{2}} s^{2} \\
=0
\end{gather*}
$$

Equation 4-40

Equation 4-41

Given $b_{0}, A_{s h}, f_{y w,} \sigma_{2}$ parameters we can solve this quadratic equation to give s value and then $\rho_{s x}$ value.
Case 2: For a circular section confined with circular hoops, from Equation 4-32:

$$
\begin{gathered}
\alpha=\left(1-\frac{s}{2 D_{0}}\right)^{2} \\
\rho_{s x}=\frac{4 \pi D_{0} A_{s h}}{s \pi D_{0}^{2}}=\frac{4 A_{s h}}{s D_{0}}
\end{gathered}
$$

Equation 4-42
substitute $\rho_{s x}$ and α into Equation $4-30$ yields

$$
\begin{array}{cc}
\frac{\sigma_{2}}{f_{y w}}=\left(1-\frac{s}{2 D_{0}}\right)^{2} \frac{4 A_{s h}}{s D_{0}} & \text { Equation 4-43 } \\
\frac{\sigma_{2} D_{0}}{4 A_{s h} f_{y w}} s=1-\frac{s}{D_{0}}+\left(\frac{s}{2 D_{0}}\right)^{2} & \text { Equation 4-44 } \\
1-\left[\frac{1}{D_{0}}+\frac{\sigma_{2} D_{0}}{4 A_{s h} f_{y w}}\right] s+\frac{1}{4 D_{0}^{2}} s^{2}=0 & \text { Equation 4-45 }
\end{array}
$$

Given $D_{0}, A_{s h}, f_{y w,} \sigma_{2}$ parameters we can solve this quadratic equation to give s value and then $\rho_{s x}$ value.

Sample calculations on confining reinforcement amount to utilize the high strength reinforcement based on confinement mechanism given in EC2 are provided in examples 5.1 and 5.2

4.9.2 By time-dependant effects

4.9.2.1 General

A concrete element when kept under sustained load presents progressive strain over time, associated to the creep. In reinforced concrete columns, such deformations cause the stress increase in the steel bars of the reinforcement and may induce the material to undergo the yielding phenomenon. The time-dependent behavior of concrete due to its creep and shrinkage properties exerts a considerable influence on the performance of concrete structures, which may cause additional strain and stress redistribution (Manasseer and Lam, 2005).

ACl 318-11 does not explicitly address the use of high strength reinforcing materials. The use of a higher compression yield stress can be justified by considering the long term redistribution of creep and shrinkage strains from the concrete to the reinforcement. Although ACI 318-11 does not address this phenomenon, Section 9.5.2.5 acknowledges it indirectly by allowing for a reduction in the long term component of deflections based upon the redistribution of creep and shrinkage strains to compression reinforcement

In reinforced concrete columns, creep and shrinkage lead to gradual load transfer from concrete to reinforcement. Assuming that cross sections remain flat caused by small strains due to creep and shrinkage under load, the stresses decrease in the concrete and increase in the reinforcing bars over time. A concrete element when kept under sustained load presents progressive strain over time, associated to the creep. In reinforced concrete columns, such deformations cause the stress increase in the steel bars of the reinforcement and may induce the material to undergo the yielding phenomenon (Rüsch et al 2011).

Based on experimental results of reinforced concrete columns, Takeuti (2003) reported that strain constraints introduced by reinforcing bars in columns should be considered, since they have a significant effect on rebar deformation.

Rossi and Maou (2013) conducted an experimental study of creep behaviour of concrete at variable stress levels (30, 50 and 70% of concrete compressive strength). They reported that a strain value of 0.005 is obtained without the failure of the concrete specimen after more than one year of loading at 70%, and that the strain is about 2.5 (250%) times the strain at the peak of a classical compression test).

Madureira et al (2013) conducted a numerical study on creep strains on reinforced concrete columns. They presented a figure to show the curves of the creep coefficient evolution with time. Percentage change of total axial strain (with long-term effects of concrete) compared to conventional axial strain is about 200% in 400 days.

Dimensions in meters

(b) Creep coefficient over time

Figure 4-14: Numerical study on creep strains on reinforced concrete columns Madureira et al (2013)

Ranaivomanana et al (2013) conducted an experimental study of creep behaviour of concrete at variable stress levels. They concluded that in terms of stress levels, non-linearity was found for compressive creep to arise somewhere between 30% and 50% of the high-strength concrete.

Zheng et al (2016) tested 12 groups of $100 \times 100 \times 400 \mathrm{~mm}$ reinforced concrete specimens under variable compressive stress to investigate effects of parameters on the creep of RC columns and the sectional stress redistribution. They found that the ultimate creep value of axial compression RC columns decreases with the increase of longitudinal compression steel reinforcement ratio.

SAH (2016) reported on their study on the time-dependent concrete deformations and their impact, including the comparison between the methods from EC 2 and ACI 318 . The additional
strain due to time effects were calculated for two cases: a simulation of a test-setup for a column subjected to concentric load until failure and a simulation of a load history for a multi-story building determining the additional strain in each level. For the first case of a concentric load until failure, the additional strain gained by the long term effects was approximately 0.1% after a year. For the second case, the strain development after 2 years for a 40 storey building including a construction time of one year was 0.05%.

Falkner et al (2008) has demonstrated that by taking creep and shrinkage of the concrete into consideration, the yield strength (up to including 670 MPa) of high strength steel reinforcement steel can be fully exploited.

TTK, (2017) in the study on the applicability of high strength rebar to concrete structures also proposed that the effect creep and shrinkage in increasing the compressive strain can be considered in column design. For example, if the permanent load is 30% of the factored load, the additional strain of 0.12% from the time effect can be attained. This enables the use of high strength steel of 600 MPa yield strength.

4.9.2.2 Typical constituent of loads on columns

The effect of creep in concrete is dependent on the level of sustained stress and the duration of the stress (the live to dead load ratios). In buildings, the sustained stress is due to the dead loads or permanent loads which comprises predominantly the self-weight of the structure and the finishes. During construction, the dead load on the columns are progressively added as the floors are constructed. The carrying capacity of the columns is to cater for the total load including the dead and imposed loads. For buildings, the provision for imposed loads is dependent of the intended usage level and to certain extend also affects the structural capacity of the building elements and hence the dead loads. A study was conducted to analyse the composition of loads in various buildings.

Table 4-8 Column loads for 21 buildings in Singapore

Type	Brief Description	$\mathrm{G}_{\mathrm{k}} /\left(1.35 \mathrm{G}_{\mathrm{k}}+1.5 \mathrm{Q}_{\mathrm{k}}\right)$			
		Min	Max	Average	Avg
Commercial/office	18 storey	0.47	0.61	0.52	0.52
Educational	Low-rise school	0.53	0.67	0.61	0.59
Educational	Low-rise school	0.53	0.68	0.59	
Educational	Low-rise school	0.56	0.66	0.61	
Educational	Low-rise school	0.57	0.69	0.61	
Educational	Low-rise school	0.56	0.70	0.62	
Educational	Low-rise school	0.51	0.68	0.60	
Educational	Low-rise school	0.53	0.68	0.60	
Educational	Low-rise school	0.51	0.59	0.56	
Educational	Low-rise school	0.46	0.66	0.59	
Educational	Low-rise school	0.53	0.63	0.57	
Educational	Low-rise school	0.52	0.65	0.59	
Educational	Low-rise school	0.48	0.68	0.57	
Hotel	10 storey	0.48	0.56	0.51	0.58
Hotel	6 storey	0.61	0.74	0.65	
Industrial	2 storey	0.16	0.49	0.36	0.42
Industrial	5 storey	0.47	0.57	0.52	
Industrial	13 storey	0.21	0.54	0.44	
Industrial	5 storey	0.30	0.46	0.34	
Residential	16 storey	0.44	0.66	0.59	
Residential	35 storey	0.55	0.70	0.62	

Table 4-8 shows the ratio of the unfactored design dead load against the total factored design load for 21 buildings in Singapore. There is a variation of values even within each category of building even though there is general trend. For example, the ratio tends to be lowest for industrial building because the imposed loads are much higher. On the other extreme, the ratio
for the residential building is usually higher because the imposed loads are generally the lowest. Similarly, data from 14 buildings in Vietnam is shown in Table 4-9.

Table 4-9 Column loads for 21 buildings in Vietnam

Type	Brief Description	$\mathrm{G}_{\mathrm{k}} /\left(1.35 \mathrm{G}_{\mathrm{k}}+1.5 \mathrm{Q}_{\mathrm{k}}\right)$
		(Average)
Residential	40 storey	0.47
Residential	40 storey	0.45
Residential	40 storey	0.45
Residential	41 storey	0.48
Residential	28 storey	0.46
Residential	33 storey	0.56
Residential	35 storey	0.56
Residential	37 storey	0.56
Residential	18 storey	0.46
Residential	38 storey	0.55
Residential	45 storey	0.51
Residential	25 storey	0.50
Commercial	28 storey	0.57
Average		

It should be noted that the level of stress in column is not a function of that ratio because the denominator is the ultimate or total factored load. In design, the capacity or resistance of the structural element must be higher than the ultimate load (or Action). The level of stress should be based on the unfactored permanent load with respect to the capacity or resistance with material factor γ_{m} of unity.

For reinforced columns under axial load only, the ultimate capacity P_{u} and design ultimate axial capacity $P_{u D}$ can be expressed as

$$
\begin{array}{cc}
P_{u}=0.85 f_{c k} A_{c}+f_{y k} A_{s} & \text { Equation 4-46 } \\
P_{u D}=0.85 f_{c k} \frac{A_{c}}{\gamma_{c}}+f_{y k} \frac{A_{s}}{\gamma_{s}}=0.567 f_{c k} A_{c}+0.87 f_{y k} A_{s} & \text { Equation 4-47 }
\end{array}
$$

Figure 4-15 : Ratio of ultimate capacity against design ultimate capacity

Figure 4-15 shows the ratio of P_{u} against $P_{u D}$ and this ratio is affected by different grades of steel, different concrete strength and different reinforcement ratios. To determine a conservative level of sustained stress in the column, the ratios in Table 4-8 can be reduced by dividing using the highest ratio of 1.47 from Figure 4-15 which corresponds to $f_{c k}=90 \mathrm{MPa}$ and 1% reinforcement.

4.9.2.3 Effect of creep and shrinkage on load redistribution in columns

As mentioned by Kong and Evans (1987), if concrete is subjected to a sustained stress, as usually the case in an actual RC column, then the total strain including elastic strain plus creep strain would increases with time, as illustrated in Figure 4-16, and there is a gradual redistribution of stress where the concrete sheds off the load it carries and this is picked up by the steel.

Figure 4-16 Typical increase of strain with time for concrete
According to SS EN 1992-1-1 (2010) the total creep strain $\varepsilon_{c c}\left(t, t_{0}\right)$ of concrete at time t for a constant compressive stress σ_{c} applied at the concrete age t_{0} can be estimated from equation (3.6) of the code, by retaining variable t, as:

$$
\varepsilon_{c c}\left(t, t_{0}\right)=\varphi\left(t, t_{0}\right) \cdot\left(\sigma_{c} / E_{c}\right) \quad \text { Equation 4-48 }
$$

where $\varphi\left(t, t_{0}\right)$ is the creep coefficient at time t and E_{c} is the tangent modulus of concrete, which may be taken as $1.05 \mathrm{E}_{\mathrm{cm}}$, with E_{cm} is the secant modulus of concrete at concrete stress equal to $0.4 \mathrm{f}_{\mathrm{cm}}$.

The creep coefficient depends on various factors and can be estimated in accordance with Appendix B of the code as follows:

$$
\varphi\left(t, t_{0}\right)=\varphi_{0} . \beta_{\mathrm{c}}\left(t, t_{0}\right)
$$

Equation 4-49

Where φ_{0} is the notional creep coefficient and may be estimated from

$$
\varphi_{0}=\varphi_{\text {RH }} \cdot \beta\left(f_{c m}\right) \cdot \beta\left(t_{0}\right) \quad \text { Equation 4-50 }
$$

$\varphi_{\text {RH }}$ is a factor to allow for the effect of relative humidity on the notional creep coefficient:

$$
\begin{array}{ccc}
\varphi_{\mathrm{RH}}=\left[1+\frac{1+R H / 100}{0.1 \sqrt[3]{h_{0}}}\right] & \text { for } f_{c m} \leq 35 \mathrm{MPa} & \text { Equation 4-51 } \\
\varphi_{\mathrm{RH}}=\left[1+\frac{1+R H / 100}{0.1 \sqrt[3]{h_{0}}} \alpha_{1}\right] \alpha_{2} & \text { for } f_{c m}>35 \mathrm{MPa} & \text { Equation 4-52 }
\end{array}
$$

$R H$ is the relative humidity of the ambient environment in \%.
$\beta\left(f_{c m}\right)$ is a factor to allow for the effect of concrete strength on the notional creep coefficient:

$$
\beta\left(f_{c m}\right)=\frac{16.8}{\sqrt{f_{c m}}}
$$

Equation 4-53
$\beta\left(t_{0}\right)$ is a factor to allow for the effect of concrete age at loading on the notional creep coefficient:

$$
\beta\left(t_{0}\right)=\frac{1}{0.1+t_{0}^{0.20}}
$$

Equation 4-54
h_{0} is the notional size of the member in mm

$$
h_{0}=2 A_{d} u
$$

$\beta_{\mathrm{c}}\left(t, t_{0}\right)$ is a coefficient to describe the development of creep with time after loading

$$
\beta_{\mathrm{c}}\left(t, t_{0}\right)=\left[\frac{t-t_{0}}{\beta_{H}+t-t_{0}}\right]^{0.3} \quad \text { Equation 4-56 }
$$

β_{H} is a coefficient depending on the relative humidity (RH in \%) and the notional member size (h_{0} in mm). It may be estimated from:
$\beta_{\mathrm{H}}=1.5\left[1+(0.012 R H)^{18}\right] h_{0}+250 \leq 1500$ for $f_{c m} \leq 35 \mathrm{MPa} \quad$ Equation 4-57
$\beta_{\mathrm{H}}=1.5\left[1+(0.012 R H)^{18}\right] h_{0}+250 \alpha_{3} \leq 1500 \alpha_{3} \quad$ for $f_{c m}>35 \mathrm{MPa} \quad$ Equation 4-58
$\alpha_{1}, \alpha_{2}, \alpha_{3}$ are coefficients to consider the influence of the concrete strength
$\alpha_{1}=\left(35 / f_{c m}\right)^{0.7} \quad ; \quad \alpha_{2}=\left(35 / f_{c m}\right)^{0.2} ; \quad \alpha_{3}=\left(35 / f_{c m}\right)^{0.5}$
Let's consider a case of RC column subjected to a concentric sustain load P. The concrete area is A_{c} and total longitudinal rebar area A_{s}. The modular ratio is defined as $\alpha_{e}=E_{s} / E_{c}$ then the concrete stress at the time of applying load t_{0} shall be

$$
\sigma_{0}=\frac{N}{A_{c}+\alpha_{e} A_{s}}
$$

and the stress in the reinforcing bar is

$$
\sigma_{\mathrm{s} 0}=\alpha_{\mathrm{e}} \sigma_{0}
$$

Equation 4-60

According to the item 3.1.4 (4) of code, if the concrete stress at age t_{0} exceeds the value of 0.45 $f_{c k}\left(\mathrm{t}_{0}\right)$ then creep non-linearity should be considered by using $\varphi_{\mathrm{nl}}\left(t, t_{0}\right)$ instead of $\varphi\left(t, t_{0}\right)$

$$
\varphi_{n l}\left(t, t_{0}\right)=\varphi\left(t, t_{0}\right) \exp \left(1.5\left(k_{\sigma}-0.45\right)\right)
$$

where k_{σ} is the stress-strength ratio, taken as $\sigma_{c} / f_{c k}\left(t_{0}\right)$.
The short-term elastic strain of concrete and steel can be computed as

$$
\varepsilon_{0}=\sigma_{0} / E_{c}
$$

Equation 4-62
Due to creep, at time t the total concrete strain will reach $\varepsilon_{c}=\varepsilon_{0}+\varepsilon_{c c}\left(t, t_{0}\right)$ and the concrete stress will be reduced to σ_{c}, which can be expressed using effective modular ratio α_{e}^{\prime} as

$$
\sigma_{c}=\frac{N}{A_{c}+\alpha_{e}^{\prime} A_{s}}
$$

The effective modular ratio α_{e}^{\prime} shall be computed with the effective modulus of elasticity of concrete $E_{c e}$ instead of original tangent modulus E_{c}

$$
\alpha_{e}^{\prime}=E_{s} / E_{c e} ; \quad E_{c e}=\sigma_{c} / \varepsilon_{c}
$$

An iterative procedure is needed to solve for the final creep strain and the redistributed stress in concrete σ_{c} and redistributed stress in reinforcing bar $\sigma_{s 0}=\alpha_{e}^{\prime} \sigma_{c}$ since the creep strain and the concrete stress are inter-dependent. This also reflects the redistribution of stress between concrete and rebar until it becomes stable. There is no influence of yield strength to the redistribution of stress except in cases the redistribution may lead to overstress of the rebar.

The shrinkage of concrete adds further stress redistribution between concrete and reinforcing bar. Shrinkage of concrete begins to take place as soon as the concrete is mixed and continue during the setting process. Even after the concrete has hardened, shrinkage continues as drying out persists over several months. According to SS EN 1992-1-1 the total shrinkage strain $\varepsilon_{c s}$ is composed of two components, the drying shrinkage strain $\varepsilon_{c d}$ and the autogenous shrinkage strain $\varepsilon_{c a}$.

$$
\varepsilon_{c s}=\varepsilon_{c d}+\varepsilon_{c a}
$$

The final value of the drying shrinkage strain, $\varepsilon_{c d, \infty}$ is equal to $k_{h} \cdot \varepsilon_{c d, o}$ where $\varepsilon_{c d, o}$ is the nominal unrestrained drying shrinkage value which may be taken from Table 3.2 and the coefficient k_{h} taken from Table 3.3 of the code.

The development of the drying shrinkage strain in time follows from equation (3.9) of the code:

$$
\begin{aligned}
& \varepsilon_{\mathrm{cd}}(\mathrm{t})=\beta_{\mathrm{ds}}\left(\mathrm{t}, \mathrm{t}_{\mathrm{s}}\right) \cdot \mathrm{k}_{\mathrm{h}} \cdot \varepsilon_{\mathrm{cd}, 0} \\
& \beta_{s d}\left(t, t_{s}\right)=\frac{\left(t-t_{s}\right)}{\left(t-t_{s}\right)+0.04 \sqrt{h_{0}^{3}}}
\end{aligned}
$$

Equation 4-66

Equation 4-67
where:

- t is the age of the concrete at the moment considered, in days;
- t_{s} is the age of the concrete (days) at the beginning of drying shrinkage (or swelling);
- h_{0} is the notional size (mm) of the cross-section.

The autogenous shrinkage strain is given in equation (3.11) of the code as:

$$
\varepsilon_{\mathrm{ca}}(t)=\beta_{\mathrm{as}}(t) \varepsilon_{\mathrm{ca}}(\infty)
$$

Equation 4-68
where:

$$
\varepsilon_{\mathrm{ca}}(\infty)=2.5\left(f_{\mathrm{ck}}-10\right) 10^{-6}
$$

Equation 4-69
and

$$
\beta_{\mathrm{as}}(t)=1-\exp \left(-0.2 t^{0.5}\right)
$$

Equation 4-70
where t is given in days.
An unrestrained concrete will have no stress but in a reinforced concrete column, the reinforcement bar resist the shrinkage and set up tensile stresses in the concrete and compressive stresses in the rebar itself. If the column is not restrained, as in the case it has just been cast without beam or slab connected at the top, then the rebar will subject to compressive strain $\varepsilon_{s c}$ and the concrete will subject to tensile strain $\varepsilon_{c t}$ as illustrated in Figure 4-17.

Figure 4-17 Effect of shrinkage strain
The basic equations for the case of unrestrained reinforced concrete subjected to shrinkage strain can be found from Mosley et al (2007) and reproduced as follow:

$$
\varepsilon_{c s}=\varepsilon_{c t}+\varepsilon_{s c}=f_{c t} / E_{c m}+f_{s c} / E_{s}
$$

Equation 4-71
where $f_{c t}$ is the tensile stress in concrete area A_{c} $f_{s c}$ is the compressive stress in steel area A_{s} and $\varepsilon_{c s}$ is the total free shrinkage of concrete.

$$
\begin{gathered}
f_{c t}=\frac{A_{s}}{A_{c}} f_{s c} \\
f_{s c}=\frac{\varepsilon_{c s} E_{s}}{1+\frac{\alpha_{e} A_{s}}{A_{c}}} \\
\varepsilon_{s c}=\frac{\varepsilon_{c s}}{1+\frac{\alpha_{e} A_{s}}{A_{c}}}
\end{gathered}
$$

Equation 4-72

Equation 4-73

Equation 4-74
α_{e} is the ratio $E_{s} / E_{c m}$

Sample calculations on effect of creep and shrinkage on load redistribution in columns are provided in Examples 6.1 and 6.2

5 Summary of design considerations

- Flexural strength design using Grade B600 steel reinforcement is no different from that for normal strength steel reinforcement. The flexural resistance of the section could be accurately computed using the well-established strain compatibility analysis method.
- Minimum reinforcement in accordance with EC2 provision is deemed appropriate with B600 reinforcement.
- Grade B600 steel bars may not reach compression yield potential before the concrete reaches the maximum stress under pure compression unless very high strength concrete is used.
- To avoid abrupt shear failure due to concrete crushing before the yielding of shear reinforcement and to control the diagonal crack width, it is recommended to have a limitation on the yield strength of shear reinforcement of RC beams. Based on available experimental study, the $f_{y w k}$ is to be limited to 500 MPa for Grade B600 as shear reinforcement.
- Slabs and beams using Grade B600 rebars may result in lightly reinforced members with increased steel service stress. As there is no gain in performance under service condition when using high strength steel instead of normal strength steel, the designer should make calculations to check for crack width and deflection limits in serviceability limit states.
- Grade B600 steel bars require long anchorage and splice lengths thus the designer may consider using mechanical splices and headed bars.
- Currently, there is no product specifications for the rebar couplers to be stipulated for use. It is recommended that ISO 15835 be adopted for that purpose. For consistency in quality conformity as that recommended for the rebars in SS 560, the Conformity assessment scheme in ISO 15835 provides the rules for the certification and for the self-evaluation of couplers to be used for the mechanical splicing of steel reinforcing bars. It also includes requirements for the control of the manufacturing process of the couplers and for the verification of their conformity.
- On moment redistribution in beams, for steel stronger than Grade B500, it is recommended that the parameters in Clause 5.5(4) on moment redistribution as suggested by the EC2 to be used instead of those given in the NA to SS EN 1992-1-1.
- The use of confinement can enhance the ductility of concrete. It also increases the strain at peak concrete stress thereby matching or even exceeding that of the strain at yield of the steel reinforcement. However, the increase in strength of the confined concrete axial
capacity must be more than the loss of the strength of the unconfined concrete (especially the cover concrete).
- While the mechanism of confinement can be utilised to increase the strain at peak stress of concrete in compression, it entails increasing the amount of transverse reinforcement in the entire length of column. This increase in transverse steel quantity also reduces the construction productivity which together may offset any advantage of using high strength steel for the main reinforcement.
- The effects of time-dependant deformation such creep and drying shrinkage can cause redistribution of forces in RC columns and increases the strain of the concrete and steel. This enables the steel to sustain a higher strain to reach yield.

References

1. ACl 318 (2011). Building Code Requirements for Structural Concrete ($\mathrm{ACl} 318-11$) and Commentary, American Concrete Institute, Farmington Hills, MI.
2. ACI ITG-6R-10 (2010) Design Guide for the Use of ASTM A1035/A1035M Grade 100 Steel Bars for Structural Concrete, American Concrete Institute, Farmington Hills, USA, 94p
3. ATC-115 (2014) Roadmap for the use of high-strength reinforcement in reinforced concrete design, Appplied Technology Council
4. Al-Manaseer, A and J.-P. Lam, J-P (2005)" Statistical Evaluation of Shrinkage and Creep Models" ACI Materials Journal 102(3):170-176
5. Madureira E. L., Siqueira T. M., Rodrigues E. C. (2013) "Creep Strains on Reinforced Concrete Columns" IBRACON Structure and Materials Journal, 6(4), 537-560.
6. Falkner et al (2008), "The new reinforcement system; compression members with SAS 670 high strength reinforcement steel - Part 1 Development, testing, design, construction", Betonund Stahlbentonbau 05/2008 No 614
7. Kong, F.K and Evans R.H (1987), "Reinforced and Prestressed Concrete", $3^{\text {rd }}$ Edition, Chapman \& Hall, 506pp.
8. Mander J.B. et al (1988), "Theoretical Stress - Strain Model for Confined Concrete", Journal of Structural Engineering, Volume 114 Issue 8 - September 1988
9. Mosley, B., Bungey, J., and Hulse, R. (2007), "Reinforced Concrete Design to EC2", Six Edition, Palgrave MacMillan, 408 pp
10. Ranaivomanana, M, Multon, S and Turatsinze A (2013) "Tensile, Compressive and Flexural Basic Creep Of Concrete at Different Stress Levels" Cement and Concrete Research 52:1-10.
11. Rossi, P, Taihan, J.L., Maou F. L (2013) "Creep strain versus residual strain of a concrete loaded under various levels of compressive stress" Cement and Concrete Research, 51, 32-37.
12. Rüsch, H; Jungwirth, D; Hilsdorf, H K (2011) "Creep and Shrinkage: Their Effect on the Behavior of Concrete Structures" Published by Springer-Verlag New York Inc.
13. SAH (2016), "Time-Dependent concrete deformations and their impact - Comparison EC2 and ACl 318)", Stahlwerk Annahutte
14. TTK, (2017) "Study on Applicability of High Strength Rebar for Concrete Structures in Korea" Tokyo Tekko Co., Ltd. Mar 2017
15. Zheng W, Tang C and Liu Y (2016) "Creep Behavior of Reinforced Concrete Column in Consideration of Sectional Stress Redistribution" Journal of Building Structures. 37(5) 264-272.

Example calculations

1. Flexural Design of beam

Example 1.1 : Design of a singly reinforced rectangular section

The ultimate design moment to be resisted by the section in Figure 1 is 185 kNm . Determine the area of tension reinforcement $\left(\mathrm{A}_{s}\right)$ required given the characteristic material strengths are $f_{y k}=600 \mathrm{~N} / \mathrm{mm}^{2}$ for the reinforcement and $f_{c k}=25$ $\mathrm{N} / \mathrm{mm}^{2}$ for the concrete.

Note: This example is similar to Example 4.1 in the text book by Mosley et al "Reinforced Concrete Design to EC2" but using high strength steel instead of $f_{y k}=500 \mathrm{~N} / \mathrm{mm}^{2}$ in that example.

Figure 1. Section in example 1.1

$$
\text { Calculate } K=M / b d^{2} f_{c k}=185 \times 10^{6} /\left(260 \times 440^{2} \times 25\right)=0.147<0.167
$$

Therefore, compression steel is not required. From Equation 4-9

$$
\begin{aligned}
& x / d=1.25-\sqrt{1.5625-5.5147 K}=0.383 \\
& x=0.383 \times 440=168 \mathrm{~mm}
\end{aligned}
$$

The required steel area is

$$
A_{s}=M /\left[0.87 f_{y}(d-0.4 x)\right]=185 \times 10^{6} /[0.87 \times 600(440-0.4 \times 168)]=951 \mathrm{~mm}^{2}
$$

Comment: Example 4.1 in the text book that uses $f_{y k}=500 \mathrm{~N} / \mathrm{mm}^{2}$ requires $A_{s}=1140 \mathrm{~mm}^{2}$.
Therefore, a saving of 17% in total steel area is achieved for this singly reinforced section when changing from grade B500 to grade B600 steel if only strength design is performed.

Check crack width for the above example

Assuming the moment under the action of the quasi-permanent load combination is $M_{q p}=0.7 M$ $=129.5 \mathrm{kNm}$, exposure class XC1 with maximum allowable crack width $\mathrm{w}_{\max }=0.3 \mathrm{~mm}$ according to NA to SS EN 1992-1-1, the creep coefficient $\varphi=2.85$ for dry atmosphere condition (50\%RH), and age of loading is 28 days. Using high bond bars for reinforcement.

Figure 2 The stress-strain distribution in a cracked section for serviceability design checking It should be noted that Singapore NA adopts the recommended values in EC2 for parameters k_{3} and k_{4} in calculation of crack width.

Case 1: using $f_{y k}=500 \mathrm{~N} / \mathrm{mm}^{2}$, as mentioned from strength calculation the required rebar area is $A_{s}=1140 \mathrm{~mm}^{2}$, choose $2 \phi 25+1 \phi 20\left(A_{s, p r o v}=1296 \mathrm{~mm}^{2}\right)$ with bar spacing at 70 mm .

From Table 3.1 of EC 2 , for $f_{c k}=25 \mathrm{~N} / \mathrm{mm}^{2}$ we have the following design parameters:
Mean compressive strength

$$
f_{c m}=25+8=33 \mathrm{~N} / \mathrm{mm}^{2}
$$

Mean tensile strength

$$
f_{c t m}=0.3 f_{c k}^{(2 / 3)}=2.56 \mathrm{~N} / \mathrm{mm}^{2}
$$

Modulus of elasticity $\quad \mathrm{E}_{\mathrm{cm}}=22\left(f_{\mathrm{cm}} / 10\right)^{0.3}=31.5 \mathrm{kN} / \mathrm{mm}^{2}$
Effective modulus of elasticity $\quad \mathrm{E}_{\mathrm{c}, \mathrm{eff}}=\mathrm{E}_{\mathrm{cm}} /(1+\varphi)=31.5 /(1+2.85)=8.15 \mathrm{kN} / \mathrm{mm}^{2}$
Modular ratio for long term effect $\alpha_{e}=E_{s} / E_{c, \text { eff }}=200 / 8.15=24.46$
Check if section cracked
The uncracked neutral axis depth can be computed from the expression below (Bond et al. 2009)

$$
x_{u}=\frac{b h^{2} / 2+\left(\alpha_{e}-1\right)\left(A_{s} d+A_{s 2} d_{2}\right)}{b h+\left(\alpha_{e}-1\right)\left(A_{s}+A_{s 2}\right)}
$$

as this is singly reinforced section, $A_{s 2}=0$

$$
x_{u}=\frac{260 \times 500^{2} / 2+(24.46-1)(1296 \times 440)}{260 \times 500+(24.46-1)(1296)}=286 \mathrm{~mm}
$$

The uncracked second moment of area

$$
\begin{aligned}
I_{u} & =\frac{b h^{3}}{12}+b h\left(h / 2-x_{u}\right)^{2}+\left(\alpha_{e}-1\right)\left[A_{s}(d-x)^{2}+A_{s 2}\left(x-d_{2}\right)^{2}\right] \\
I_{u} & =\frac{260 \times 500^{3}}{12}+260 \times 500(500 / 2-286)^{2}+(24.46-1) \times 1296(440-286)^{2} \\
I_{u} & =3.598 \times 10^{9} \mathrm{~mm}^{2}
\end{aligned}
$$

Cracking moment

$$
M_{c r}=f_{c t} I_{w} /(h-x)=2.56 \times 3.598 \times 10^{9} /(500-286) / 10^{6}
$$

$$
\begin{aligned}
& M_{c r}=43.13 \mathrm{kNm}<M_{q p}=129.50 \mathrm{kNm} \rightarrow \text { section cracked } \\
& M_{c r}=43.13 \mathrm{kNm}<M_{q p}=129.50 \mathrm{kNm} \rightarrow \text { section cracked }
\end{aligned}
$$

The crack with W_{k} may be calculated from Expression (7.8) of EC2:

$$
W_{k}=S_{r, \text { max }}\left(\varepsilon_{s m}-\varepsilon_{c m}\right)
$$

The maximum crack spacing $S_{r, \text { max }}$ shall not exceed the values determined by Expression (7.11) and (7.14) of EC2, which are

- from Expression (7.11) $\quad S_{r, \text { max }}=k_{3} c+k_{1} k_{2} k_{4} \phi / \rho_{\rho, \text { eff }}$

For high bond bar, $k_{1}=0.8$, for bending calculation $k_{2}=0.5, k_{3}=3.4$ and $k_{4}=0.425$ as recommended by EC2

Since there are two diameters of rebar, $2 \phi 25+1 \phi 20$, the diameter ϕ shall be taken as the equivalent diameter $\phi_{e q}$ (EC2 Eqn 7.12) and is computed as

$$
\phi_{e q}=\frac{n_{1} \phi_{1}^{2}+n_{2} \phi_{2}^{2}}{n_{1} \phi_{1}+n_{2} \phi_{2}}=\frac{2 \times 25^{2}+20^{2}}{2 \times 25+20}=23.6 \mathrm{~mm}
$$

For RC beam the effective ratio $\rho_{\rho, \text { eff }}$ is computed as

$$
\rho_{\rho, \text { eff }}=A_{s} / A_{c, e f f}
$$

$A_{c, \text { eff }}$ is the effective area of concrete in tension surrounding the reinforcement of depth $h_{c, \text { eff }}$ where $h_{c, e f f}$ is the lesser of $2.5(h-d),(h-x) / 3, h / 2$.

The cracked neutral axis depth x can be determined from the Expression given in Bond et. al. (2009) as
$x=\left\{\left[\left(\mathrm{A}_{\mathrm{s}} \alpha_{\mathrm{e}}+\mathrm{A}_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right)^{2}+2 \mathrm{~b}\left(\mathrm{~A}_{\mathrm{s}} \mathrm{d} \alpha_{\mathrm{e}}+\mathrm{A}_{\mathrm{s} 2} \mathrm{~d}_{2}\left(\alpha_{\mathrm{e}}-1\right)\right)\right]^{0.5}-\left(\mathrm{A}_{\mathrm{s}} \alpha_{\mathrm{e}}+\mathrm{A}_{\mathrm{s} 2}\left(\alpha_{\mathrm{e}}-1\right)\right)\right\} / b$ for singly reinforced section $A_{s 2}=0$, thus
$x=\left\{\left[(1296 \times 24.46)^{2}+2 \times 260 \times 1296 \times 440 \times 24.46\right]^{0.5}-1296 \times 24.46\right\} / 260$
$x=227.6 \mathrm{~mm}$
$(h-x) / 3=(500-227.6) / 3=90.8 \mathrm{~mm}<2.5(h-d)=150 \mathrm{~mm}<h / 2=250 \mathrm{~mm}$
thus $h_{c, e f f}=90.8 \mathrm{~mm}$

$$
\begin{aligned}
& A_{c, e f f}=b h_{c, \text { eff }}-A_{s}=260 \times 90.8-1296=22313 \mathrm{~mm}^{2} \\
& \rho_{\rho, e f f}=1296 / 22313=0.0581
\end{aligned}
$$

$S_{r, \text { max }}$ computed from Expression (7.11) of EC2

$$
S_{r, \max }=3.4 \times 47.5+0.8 \times 0.5 \times 0.425 \times 23.6 / 0.0581=230.6 \mathrm{~mm}
$$

$S_{r, \text { max }}$ computed from Expression (7.14) of EC2

$$
S_{r, \max }=1.3(h-x)=1.3 \times(500-227.6)=354.1 \mathrm{~mm}
$$

Therefore final maximum crack spacing $S_{r, \max }=230.6 \mathrm{~mm}$

The average strain for crack width calculation can be determined from Expression (7.9) of EC2

$$
\varepsilon_{s m}-\varepsilon_{c m}=\frac{\sigma_{s}-k_{t} \frac{f_{c t, e f f}}{\rho_{\rho, e f f}}\left(1+\alpha_{e} \rho_{\rho, e f f}\right)}{E_{s}} \geq 0.6 \frac{\sigma_{s}}{E_{s}}
$$

σ_{s} is the stress in the tension reinforcement of a cracked section, which can be determined from the force equilibrium for section as shown in Figure 2 as follows:

Determine the concrete stress from moment equilibrium

$$
\begin{aligned}
& \sigma_{c}=M /[b x(d-x / 3) / 2] \\
& \sigma_{c}=129.50 \times 10^{6} /[260 \times 227.6(440-227.6 / 3) / 2] \\
& \sigma_{c}=12.02 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stress in tension steel

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=\sigma_{\mathrm{c}} \cdot \alpha_{\mathrm{e}}(d-x) / x=12.32 \times 24.46(440-227.6) / 227.6 \\
& \sigma_{\mathrm{s}}=274.4 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

For long term loading, the factor $k_{t}=0.4$, therefore

$$
\varepsilon_{s m}-\varepsilon_{c m}=\frac{274.4-0.4 \frac{2.56}{0.0581}(1+24.46 \times 0.0581)}{200000}=0.001158 \geq 0.6 \frac{\sigma_{s}}{E_{s}}=0.000818
$$

The crack width is

$$
W_{k}=S_{r, \max }\left(\varepsilon_{s m}-\varepsilon_{c m}\right)=230.6 \times 0.001158=0.27 \mathrm{~mm}
$$

This crack width is smaller than allowable crack width 0.30 mm , thus the provided reinforcement is acceptable.

Case 2: using $f_{y k}=600 \mathrm{~N} / \mathrm{mm}^{2}$ the required rebar area from strength calculation done earlier is $A_{s}=951 \mathrm{~mm}^{2}$, choose $2 \phi 25\left(A_{s, p r o v}=982 \mathrm{~mm}^{2}\right)$ with bar spacing at 140 mm .

By inspection as the A_{s} in this case is smaller than in Case 1 thus section is cracked under the same $M_{q p}=129.5 \mathrm{kNm}$.

Calculate neutral axis depth for cracked section
$x=\left\{\left[(982 \times 24.46)^{2}+2 \times 260 \times 982 \times 440 \times 24.46\right]^{0.5}-982 \times 24.46\right\} / 260$
$x=207.3 \mathrm{~mm}$
$(h-x) / 3=(500-207.3) / 3=97.56 \mathrm{~mm}<2.5(h-d)=150 \mathrm{~mm}<h / 2=250 \mathrm{~mm}$
thus $h_{c, e f f}=97.56 \mathrm{~mm}$

$$
\begin{aligned}
& A_{c, \text { eff }}=b h_{c, e f f}-A_{s}=260 \times 97.56-982=24383 \mathrm{~mm}^{2} \\
& \rho_{\rho, \text { eff }}=982 / 24383=0.0403
\end{aligned}
$$

$S_{r, \text { max }}$ computed from Expression (7.11) of EC2

$$
S_{r, \max }=k_{3} c+k_{1} k_{2} k_{4} \phi / \rho_{\rho, e f f}=3.4 \times 48+0.8 \times 0.5 \times 0.425 \times 25 / 0.0403=267.1 \mathrm{~mm}
$$

$S_{r, \text { max }}$ computed from Expression (7.14) of EC2

$$
S_{r, \max }=1.3(h-x)=1.3 \times(500-207.3)=380.5 \mathrm{~mm}
$$

Therefore final maximum crack spacing $S_{r, \max }=267.1 \mathrm{~mm}$
Determine the concrete stress from moment equilibrium

$$
\sigma_{c}=M /[b x(d-x / 3) / 2]
$$

$$
\begin{aligned}
& \sigma_{\mathrm{c}}=129.50 \times 10^{6} /[260 \times 207.3(440-207.3 / 3) / 2] \\
& \sigma_{\mathrm{c}}=12.95 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stress in tension steel

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=\sigma_{\mathrm{c}} \cdot \alpha_{\mathrm{e}}(d-x) / x=12.95 \times 24.46(440-207.3) / 207.3 \\
& \sigma_{\mathrm{s}}=355.7 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

For long term loading, the factor $k_{t}=0.4$, therefore

$$
\varepsilon_{s m}-\varepsilon_{c m}=\frac{355.7-0.4 \frac{2.56}{0.0403}(1+24.46 \times 0.0403)}{200000}=0.001525 \geq 0.6 \frac{\sigma_{s}}{E_{s}}=0.001067
$$

The crack width is

$$
W_{k}=S_{r, \max }\left(\varepsilon_{s m}-\varepsilon_{c m}\right)=267.1 \times 0.001525=0.41 \mathrm{~mm}
$$

This crack width exceeds the allowable crack width of 0.30 mm , thus the provided reinforcement is not sufficient for serviceability design requirement. The provided reinforcement has to be increased for example, by adding one $\phi 20$ rebar, i.e similar reinforcement as in case 1 , we will get the same crack width in case 1 of 0.27 mm that can satisfy the crack width requirement.

Comment: In this case when we change reinforcement from grade B500 to grade B600, we may reduce the reinforcement area based on strength calculation but after checking the serviceability design requirement the reduced reinforcement area cannot satisfy the crack width requirement, therefore similar area of reinforcement as for the case of grade B500 is needed.

Case 3: Similar with case 2 but the moment under the action of the quasi-permanent load combination is $M_{q p}=0.51 \mathrm{M}=94.35 \mathrm{kNm}$, the ratio 0.51 corresponds with the case dead load equal to 1.5 live load and $\mathrm{M}=1.35 \mathrm{DL}+1.5 \mathrm{LL}, \mathrm{M}_{\mathrm{qp}}=1.0 \mathrm{DL}+0.3 \mathrm{LL}$. Using $f_{y \mathrm{k}}=600 \mathrm{~N} / \mathrm{mm}^{2}$ the required rebar area from strength calculation done earlier is $A_{s}=951 \mathrm{~mm}^{2}$, choose $2 \phi 25\left(A_{s, \text { prov }}\right.$ $=982 \mathrm{~mm}^{2}$) with bar spacing at 140 mm .

Check if section cracked
The uncracked neutral axis depth can be computed similar to case 1 with $A_{s}=982 \mathrm{~mm}^{2}$ as below

$$
x_{u}=\frac{260 \times 500^{2} / 2+(24.46-1)(982 \times 440)}{260 \times 500+(24.46-1)(982)}=278.6 \mathrm{~mm}
$$

The uncracked second moment of area for singly reinforced section

$$
\begin{aligned}
& I_{u}=\frac{b h^{3}}{12}+b h\left(h / 2-x_{\mathrm{u}}\right)^{2}+\left(\alpha_{\mathrm{e}}-1\right) A_{\mathrm{s}}(d-x)^{2} \\
& I_{u}=\frac{260 \times 500^{3}}{12}+260 \times 500(500 / 2-278.6)^{2}+(24.46-1) \times 982(440-278.6)^{2} \\
& I_{u}=3.415 \times 10^{9} \mathrm{~mm}^{2}
\end{aligned}
$$

Cracking moment

$$
\begin{aligned}
& M_{c r}=f_{c t} I_{l} /(h-x)=2.56 \times 3.415 \times 10^{9} /(500-279) / 10^{6} \\
& M_{c r}=39.56 \mathrm{kNm}<M_{\mathrm{qp}}=94.35 \mathrm{kNm} \rightarrow \text { section cracked }
\end{aligned}
$$

Calculate neutral axis depth for cracked section

```
\(x=\left\{\left[(982 \times 24.46)^{2}+2 \times 260 \times 982 \times 440 \times 24.46\right]^{0.5}-982 \times 24.46\right\} / 260\)
```

$x=207.3 \mathrm{~mm}$
$(\mathrm{h}-\mathrm{x}) / 3=(500-207.3) / 3=97.56 \mathrm{~mm}<2.5(\mathrm{~h}-\mathrm{d})=150 \mathrm{~mm}<\mathrm{h} / 2=250 \mathrm{~mm}$
thus $h_{c, \text { eff }}=97.56 \mathrm{~mm}$

$$
\begin{aligned}
& A_{c, \text { eff }}=b h_{c, e f f}-A_{\mathrm{s}}=260 \times 97.56-982=24383 \mathrm{~mm}^{2} \\
& \rho_{\rho, \text { eff }}=982 / 24383=0.0403
\end{aligned}
$$

$S_{r, \text { max }}$ computed from Expression (7.11) of EC2

$$
S_{r, \max }=k_{3} c+k_{1} k_{2} k_{4} \phi / \rho_{\rho, e f f}=3.4 \times 48+0.8 \times 0.5 \times 0.425 \times 25 / 0.0403=267.1 \mathrm{~mm}
$$

$S_{r, \text { max }}$ computed from Expression (7.14) of EC2

$$
S_{r, \max }=1.3(h-x)=1.3 \times(500-207.3)=380.5 \mathrm{~mm}
$$

Therefore final maximum crack spacing $S_{r, \max }=267.1 \mathrm{~mm}$
Determine the concrete stress from moment equilibrium

$$
\begin{aligned}
& \sigma_{\mathrm{c}}=M /[b x(d-x / 3) / 2] \\
& \sigma_{\mathrm{c}}=94.35 \times 10^{6} /[260 \times 207.3(440-207.3 / 3) / 2] \\
& \sigma_{\mathrm{c}}=9.44 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stress in tension steel

$$
\begin{aligned}
& \sigma_{\mathrm{s}}=\sigma_{\mathrm{c}} \cdot \alpha_{\mathrm{e}}(d-x) / x=9.44 \times 24.46(440-207.3) / 207.3 \\
& \sigma_{\mathrm{s}}=259.1 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

For long term loading, the factor $k_{\mathrm{t}}=0.4$, therefore

$$
\varepsilon_{s m}-\varepsilon_{c m}=\frac{259.1-0.4 \frac{2.56}{0.0403}(1+24.46 \times 0.0403)}{200000}=0.001042 \geq 0.6 \frac{\sigma_{s}}{E_{s}}=0.000777
$$

The crack width is

$$
W_{\mathrm{k}}=S_{\mathrm{r}, \max }\left(\varepsilon_{\mathrm{sm}}-\varepsilon_{\mathrm{cm}}\right)=267.1 \times 0.001042=0.28 \mathrm{~mm}
$$

This crack width is smaller than allowable crack width 0.30 mm , thus the provided reinforcement of $2 \phi 25$ is acceptable.

The results of case 2 and case 3 above illustrate that when using high strength rebar grade 600, the designer needs to check the serviceablity limit state as the reduction of reinforcement area may lead to excessive crack width.

Example 1.2: Flexural design of doubly reinforced beam

Determine the areas of reinforcement required for the section shown in Figure 3 to resist an ultimate design moment of 285 kNm . The characteristic strengths are $f_{y k}=600 \mathrm{~N} / \mathrm{mm}^{2}$ for the reinforcement and $f_{c k}=25 \mathrm{~N} / \mathrm{mm}^{2}$ for the concrete.

Note: This example is similar to Example 4.3 in the text book by Mosley et al "Reinforced Concrete Design to EC2" but using high strength steel instead of $f_{y k}=500 \mathrm{~N} / \mathrm{mm}^{2}$ in the Example 4.3.

Figure 3 Section in example 1.2
Calculate $K=M / b d^{2} f_{c k}=285 \times 10^{6} /\left(260 \times 440^{2} \times 25\right)=0.226>0.167$
therefore compression steel is required.
Since $d^{\prime} / d=50 / 440=0.11<0.117$ thus compression steel will have yielded.
Compression steel area

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.226-0.167) 25 \times 260 \times 440^{2}}{0.87 \times 600(440-50)}=365 \mathrm{~mm}^{2}
$$

Tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z_{b a l}}+A_{s}^{\prime}=\frac{0.167 \times 25 \times 260 \times 440^{2}}{0.87 \times 600(0.82 \times 440)}+365=1116+365=1481 \mathrm{~mm}^{2}
$$

Comment: Example 4.3 of the text book that uses $f_{y k}=500 \mathrm{~N} / \mathrm{mm} 2$ gives $A_{s}^{\prime}=438 \mathrm{~mm}^{2}$ and $A_{s}=$ $1777 \mathrm{~mm}^{2}$. Therefore a saving of 17% in total steel area is achieved for this doubly reinforced section when changing from Grade B500 to Grade B600 steel. However once the service load is known, further checking of crack and deflection should be carried out to ensure the rebar provided can satisfy both strength and serviceability requirements.

2. Design chart for columns

The design charts for rectangular columns have been prepared for concrete strengths of C30/37 and $C 90 / 105$. The value of d / h have been chosen between 0.75 and 0.9 in steps of 0.05 . Reinforcement ratios have been taken from 1.0 to 8% in steps of 1%. The centre line of the reinforcement is shown on a diagram of each graph. It is assumed that all the reinforcement is distributed symmetrically over the length of the two centre lines.

For all charts $f_{y \mathrm{k}}$ is taken as $600 \mathrm{~N} / \mathrm{mm}^{2}$ and the partial safety factor for reinforcement is $\gamma_{m}=1.15$. Modulus of elasticity of reinforcement steel has been taken as $200,000 \mathrm{~N} / \mathrm{mm}^{2}$.

The parabolic-rectangle stress block was used for concrete stress distribution.

Chart $2.1 \quad f_{c k}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$d / h=0.75$

Chart 2.2
$f_{\text {ck }}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$d / h=0.80$

Chart 2.4
$\mathrm{f}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$d / h=0.90$

Chart 2.6

$$
\mathrm{f}_{\mathrm{ck}}=90 \mathrm{~N} / \mathrm{mm}^{2}
$$

$d / h=0.80$

Chart $2.7 \quad f_{c k}=90 \mathrm{~N} / \mathrm{mm}^{2}$
$d / h=0.85$

Chart 2.8

$$
\mathrm{f}_{\mathrm{ck}}=90 \mathrm{~N} / \mathrm{mm}^{2}
$$

$d / h=0.90$

3. Moment redistribution for beams

Example 3.1 Design of tension and compression reinforcement with concrete strength $f_{\mathrm{ck}}=25 \mathrm{MPa}$.

For the beam shown in Figure 4, the ultimate moment before redistribution is 462.5 kNm (hogging moment at support) of the beam. For comparison purpose, different cases are assumed:

- Case 1: No moment redistribution, rebar grade B500B to SS 560:2016;
- Case 2: No moment redistribution, rebar grade B600B to SS 560:2016;
- Case 3: 20\% moment redistribution, rebar grade B500B to SS 560:2016, using Singapore Annex to EC2;
- Case 4: 20\% moment redistribution, rebar grade B600B to SS 560:2016, using Singapore Annex to EC2;
- Case 5: 20\% moment redistribution, rebar grade B500B to SS 560:2016, using recommended values in EC2;
- Case 6: 20\% moment redistribution, rebar grade B600B to SS 560:2016, using recommended values in EC2.

For the cases of 20% moment redistribution with ultimate moment reduced to 370 MPa , it is assumed that the additional sagging moment redistributed to mid span would be recalculated elsewhere.

Figure 4 Beam doubly reinforced to resist a hogging moment

Case 1: No moment redistribution, rebar grade B500B to SS 560:2016
Calculate parameter K

$$
K=M / b d^{2} f_{c k}=462.5 \times 10^{6} / 300 \times 540^{2} \times 25=0.211
$$

Without moment redistribution, from Table 4-4 we have $K_{b a l}=0.167, K>K_{b a l}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.45 d=0.45 \times 540=243 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(243-50)}{243}=0.00278>0.00217
$$

thus compression steel has yielded
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.211-0.167) \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times(540-50)}=456 \mathrm{~mm}^{2}
$$

Try $2 \phi 20$ for A_{s}^{\prime}, area $=628 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

where $z=d-0.4 x=540-0.4 \times 243=443 \mathrm{~mm}$

$$
A_{s}=\frac{0.167 \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times 443}+456=2352 \mathrm{~mm}^{2}
$$

Try $5 \phi 25$ for A_{s}, area $=2454 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, p r o v}^{\prime}-A_{s, \text { req }}^{\prime}\right)=628-456=172 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=2454-2352=102 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad=>\text { ductility is ensured }
\end{gathered}
$$

Case 2: No moment redistribution, rebar grade B600B to SS 560:2016
Similar to case 1 with the limitation $\mathrm{x} / \mathrm{d}=0.45$ we will have $K=0.211>K_{b a l}=0.167$ and compression reinforcement is needed.

The neutral axis depth $\quad x=0.45 d=0.45 \times 540=243 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(243-50)}{243}=0.00278>0.00261
$$

thus compression steel has yielded
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.211-0.167) \times 25 \times 300 \times 540^{2}}{0.87 \times 600 \times(540-50)}=380 \mathrm{~mm}^{2}
$$

Try $2 \phi 16$ for A_{s}^{\prime}, area $=402 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

where $z=d-0.4 x=540-0.4 \times 243=443 \mathrm{~mm}$

$$
A_{s}=\frac{0.167 \times 25 \times 300 \times 540^{2}}{0.87 \times 600 \times 443}+380=1960 \mathrm{~mm}^{2}
$$

Provide $4 \phi 25$ for A_{s}, area $=1963 \mathrm{~mm}^{2}$
Check

$$
\left(A_{s, \text { prov }}^{\prime}-A_{s, r e q}^{\prime}\right)=402-380=22 \mathrm{~mm}^{2}
$$

$$
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=1963-1960=3 \mathrm{~mm}^{2}
$$

$\left(A_{s, p r o v}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \Rightarrow$ ductility is ensured.

Case 3: Design for_20\% moment redistribution, rebar grade B500B to SS 560:2016, using Singapore Annex to EC2

The reduced ultimate moment $\mathrm{M}=370 \mathrm{kNm}$
Using Singapore Annex to EC2 we have parameters $k_{1}=0.4, k_{2}=1.0$
Calculate parameter K

$$
K=M / b d^{2} f_{c k}=370 \times 10^{6} / 300 \times 540^{2} \times 25=0.169
$$

With 20% redistribution, from Table 4-4 we have $x_{u} / d=0.4$ and $K_{b a l}=0.152$
$K>K_{b a l}$ thus compression reinforcement is needed.
The neutral axis depth $\quad x=0.4 d=0.4 \times 540=216 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(216-50)}{216}=0.00269>0.00217
$$

thus compression steel has yielded
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.169-0.152) \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times(540-50)}=173 \mathrm{~mm}^{2}
$$

Try $2 \phi 16$ for A_{s}^{\prime}, area $=402 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

where $z=d-0.4 x=540-0.4 \times 216=454 \mathrm{~mm}$

$$
A_{s}=\frac{0.152 \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times 454}+173=1861 \mathrm{~mm}^{2}
$$

Try $4 \phi 25$ for A_{s}, area $=1963 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=402-173=229 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=1963-1861=102 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \Rightarrow \text { ductility is ensured }
\end{gathered}
$$

Case 4: Design for 20\% moment redistribution, rebar grade B600B to SS 560:2016, using Singapore Annex to EC2

The reduced ultimate moment $M=370 \mathrm{kNm}$
Using Singapore Annex to EC2 we have parameters $k_{1}=0.4, k_{2}=1.0$
Calculate parameter K

$$
K=M / b d^{2} f_{c k}=370 \times 10^{6} / 300 \times 540^{2} \times 25=0.169
$$

With 20% redistribution, from Table 4-4 we have $x_{u} / d=0.4$ and $K_{b a l}=0.152$
$K>K_{b a l}$ thus compression reinforcement is needed.
The neutral axis depth $\quad x=0.4 d=0.4 \times 540=216 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(216-50)}{216}=0.00269>0.00261
$$

thus compression steel has yielded
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.169-0.152) \times 25 \times 300 \times 540^{2}}{0.87 \times 600 \times(540-50)}=144 \mathrm{~mm}^{2}
$$

Try $2 \phi 16$ for A_{s}^{\prime}, area $=402 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

where $z=d-0.4 x=540-0.4 \times 216=454 \mathrm{~mm}$

$$
A_{s}=\frac{0.152 \times 25 \times 300 \times 540^{2}}{0.87 \times 600 \times 454}+144=1551 \mathrm{~mm}^{2}
$$

Provide $2 \phi 32$ for A_{s}, area $=1608 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=402-144=258 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=1608-1551=57 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad>\text { ductility is ensured }
\end{gathered}
$$

Case 5: Design for 20\% moment redistribution, rebar grade B500B to SS 560:2016, using recommended values of EC2

The reduced ultimate moment $M=370 \mathrm{kNm}$
Using recommended values of EC2 we have parameters $k_{1}=0.44, k_{2}=1.25$
With 20% redistribution, from Table 4-4 we have $x_{u} / d=0.288$ and $K_{b a l}=0.116$
$\mathrm{K}=\mathrm{M} / b d^{2} f_{c k}=370 \times 10^{6} / 300 \times 540^{2} \times 25=0.169>\mathrm{K}_{\text {bal }}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.288 d=0.288 \times 540=156 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(156-50)}{156}=0.00238>0.00217
$$

thus compression steel has yielded
Compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{0.87 f_{y k}\left(d-d^{\prime}\right)}=\frac{(0.169-0.116) \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times(540-50)}=551 \mathrm{~mm}^{2}
$$

Provide $2 \phi 20+1 \phi 16$ for A_{s}^{\prime}, area $=829 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime}
$$

where $z=d-0.4 x=540-0.4 \times 156=478 \mathrm{~mm}$

$$
A_{s}=\frac{0.116 \times 25 \times 300 \times 540^{2}}{0.87 \times 500 \times 478}+551=1766 \mathrm{~mm}^{2}
$$

Provide $4 \phi 25$ for A_{s}, area $=1963 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=829-551=278 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=1963-1766=197 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \Rightarrow \text { ductility is ensured }
\end{gathered}
$$

Case 6: Design for 20\% moment redistribution, rebar grade B600B to SS 560:2016, using recommended values of EC2

The reduced ultimate moment $M=370 \mathrm{kNm}$
Using recommended values of EC2 we have parameters $k_{1}=0.44, k_{2}=1.25$
With 20% redistribution, from Table 4-4 we have $x_{u} / d=0.288$ and $K_{b a l}=0.116$
$K=M / b d^{2} f_{c k}=370 \times 10^{6} / 300 \times 540^{2} \times 25=0.169>K_{b a l}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.288 d=0.288 \times 540=156 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{s c}=\frac{0.0035\left(x-d^{\prime}\right)}{x}=\frac{0.0035(156-50)}{156}=0.00238<0.00261
$$

thus $f_{s c}<0.87 f_{y k}$
steel compressive stress, $f_{\mathrm{sc}}=E_{s} \varepsilon_{s c}=200000 \times 0.00238=475 \mathrm{~N} / \mathrm{mm}^{2}$
Compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)}=\frac{(0.169-0.116) \times 25 \times 300 \times 540^{2}}{475 \times(540-50)}=504 \mathrm{~mm}^{2}
$$

Provide $2 \phi 20$ for A_{s}^{\prime}, area $=628 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime} \frac{f_{s c}}{0.87 f_{y k}}
$$

where $z=d-0.4 x=540-0.4 \times 156=478 \mathrm{~mm}$

$$
A_{s}=\frac{0.116 \times 25 \times 300 \times 540^{2}}{0.87 \times 600 \times 478}+504 \frac{475}{0.87 \times 600}=1472 \mathrm{~mm}^{2}
$$

Provide $3 \phi 25$ for A_{s}, area $=1473 \mathrm{~mm}^{2}$
Check

$$
\begin{aligned}
& \left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=628-504=124 \mathrm{~mm}^{2} \\
& \left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=1473-1472=1 \mathrm{~mm}^{2}
\end{aligned}
$$

$\left(A_{s, p r o v}^{\prime}-A_{s, r e q}^{\prime}\right)>\left(A_{s, p r o v}-A_{s, r e q}\right) \quad$ ductility is ensured

Table 1 Summary of required reinforcement area for the six cases of Example 3.1

Rebar	No moment redistribution		20\% Moment redistribution			
			Singapore Annex		Recommended value EC2	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
	$\begin{aligned} & \hline f_{y k}=500 \\ & \mathrm{~N} / \mathrm{mm} 2 \end{aligned}$	$\begin{array}{\|l} \hline f_{y k}=600 \\ \mathrm{~N} / \mathrm{mm} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline f_{y \mathrm{k}}=500 \\ & \mathrm{~N} / \mathrm{mm} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline f_{y \mathrm{k}}=600 \\ & \mathrm{~N} / \mathrm{mm} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & f_{y k}=500 \\ & \mathrm{~N} / \mathrm{mm} 2 \end{aligned}$	$\begin{aligned} & f_{y k}=600 \\ & \mathrm{~N} / \mathrm{mm} 2 \end{aligned}$
$A_{s, r e q}^{\prime}$	456	380	173	144	551	504
$A_{s, r e q}$	2352	1960	1861	1551	1766	1472
$A_{s, p r o v}^{\prime}$	628	402	402	402	829	628
$A_{\text {s,prov }}$	2454	1963	1963	1608	1963	1473

Comments : From Table 1 it can be seen that using parameters from EC2 requires more compression reinforcement than using those provided by Singapore NA for the same percentage of moment redistribution. With the same parameters, a section using higher strength reinforcement requires less reinforcement than the one using lower strength reinforcement. It is necessary to check that the extra amount of reinforcement provided for compression reinforcement compared to the required area shall not be less than that for tension reinforcement to ensure the ductility requirement.

Example 3.2 Design of tension and compression reinforcement for the beam with

 concrete strength $f_{c k}=60 \mathrm{MPa}$.

Figure 5 Beam section in Example 3-2 to resist a hogging moment
The ultimate moment before redistribution is 750 kNm causing hogging of the beam. For comparison purpose, different cases are assumed:

- Case 1: No moment redistribution, rebar grade B500B to SS 560:2016;
- Case 2: No moment redistribution, rebar grade B600B to SS 560:2016;
- Case 3: 20\% moment redistribution, rebar grade B500B to SS 560:2016, using Singapore Annex to EC2;
- Case 4: 20\% moment redistribution, rebar grade B600B to SS 560:2016, using Singapore Annex to EC2;
- Case 5: 20\% moment redistribution, rebar grade B500B to SS 560:2016, using recommended values in EC2;
- Case 6: 20\% moment redistribution, rebar grade B600B to SS 560:2016, using recommended values in EC2.

For the cases of 20% moment redistribution with ultimate moment reduced to 560 Mpa , it is assumed that the additional sagging moment redistributed to mid span would be recalculated elsewhere.

Case 1: No moment redistribution, rebar grade B500B to SS 560:2016
For high strength concrete $f_{c k}=60 \mathrm{~N} / \mathrm{mm}^{2}$ we have $\lambda=0.8-(60-50) / 400=0.775, \eta=1-(60-$
$50) / 200=0.95, \varepsilon_{c u}=0.00288$
Calculate parameter K

$$
K=M / b d^{2} f_{c k}=700 \times 10^{6} / 300 \times 540^{2} \times 60=0.133
$$

Without moment redistribution, from Table 4-5 for $f_{c k}=60 \mathrm{~N} / \mathrm{mm}^{2}$ and using Singapore Annex we have $K_{b a l}=0.126, K>K_{b a l}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.35 d=0.35 \times 540=189 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{S c}=\frac{\varepsilon_{c u}\left(x-d^{\prime}\right)}{x}=\frac{0.00288(189-50)}{189}=0.00212<0.00217
$$

thus $f_{s c}<0.87 f_{y k}$
steel compressive stress: $f_{\mathrm{sc}}=E_{\mathrm{s}} \varepsilon_{s c}=200000 \times 0.00212=424 \mathrm{~N} / \mathrm{mm}^{2}$
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)}=\frac{(0.133-0.126) \times 60 \times 300 \times 540^{2}}{424 \times(540-50)}=180 \mathrm{~mm}^{2}
$$

Try $2 \phi 20$ for A_{s}^{\prime}, area $=628 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime} \frac{f_{s c}}{0.87 f_{y k}}
$$

where $z=d-0.5 \lambda x=540-0.5 \times 0.775 \times 189=467 \mathrm{~mm}$

$$
A_{s}=\frac{0.126 \times 60 \times 300 \times 540^{2}}{0.87 \times 500 \times 467}+180 \frac{424}{0.87 \times 500}=3439 \mathrm{~mm}^{2}
$$

Try $4 \phi 25+2 \phi 32$ for A_{S}, area $=3572 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=628-180=443 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=3572-3459=133 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \Rightarrow \text { ductility is ensured }
\end{gathered}
$$

Case 2: No moment redistribution, rebar grade B600B to SS 560:2016
Similar to case 1 with the limitation $x / d=0.35$ we have $K=0.133>K_{\text {bal }}=0.126$ and compression reinforcement is needed. Similar to case 1 we have $x=189 \mathrm{~mm}$ and $\varepsilon_{s c}=0.00212$

Steel compressive stress: $f_{\mathrm{sc}}=E_{\mathrm{s}} \varepsilon_{s c}=200000 \times 0.00212=424 \mathrm{~N} / \mathrm{mm}^{2}$
Required compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)}=\frac{(0.133-0.126) \times 60 \times 300 \times 540^{2}}{424 \times(540-50)}=180 \mathrm{~mm}^{2}
$$

Try $2 \phi 20$ for A_{s}^{\prime}, area $=628 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} z}+A_{s}^{\prime} \frac{f_{s c}}{0.87 f_{y k}}
$$

where $z=d-0.5 \lambda x=540-0.5 \times 0.775 \times 189=467 \mathrm{~mm}$

$$
A_{s}=\frac{0.126 \times 60 \times 300 \times 540^{2}}{0.87 \times 600 \times 467}+180 \frac{424}{0.87 \times 600}=2866 \mathrm{~mm}^{2}
$$

Try $6 \phi 25$ for A_{s}, area $=2945 \mathrm{~mm}^{2}$
Check

$$
\begin{aligned}
& \left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=628-180=448 \mathrm{~mm}^{2} \\
& \left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=2945-2866=80 \mathrm{~mm}^{2}
\end{aligned}
$$

$\left(A_{s, \text { prov }}^{\prime}-A_{s, r e q}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \Rightarrow$ ductility is ensured

Case 3: Design for 20\% moment redistribution, rebar grade B500B to SS 560:2016, using Singapore Annex to EC2

The reduced ultimate moment $M=560 \mathrm{kNm}$
Using Singapore Annex to EC2 we have parameters $k_{3}=0.4, k_{4}=0.6+0.0014 / \varepsilon_{c u}=$ $0.6+0.0014 / 0.00288=1.086$

Calculate parameter K

$$
K=M / b d^{2} f_{c k}=560 \times 10^{6} / 300 \times 540^{2} \times 60=0.107
$$

With 20\% redistribution, from Table 4-5 using Singapore Annex we have $x_{u} / d=0.35$ and $K_{b a l}=$ 0.126
$K<K_{b a l}$ thus compression reinforcement is not required.
The expression for calculation of ratio x / d for singly reinforced section for HSC has been derived in Equation 4-15 as follows

$$
\frac{\alpha_{c c} \eta \lambda^{2}}{3}\left(\frac{x}{d}\right)^{2}-\frac{\alpha_{c c} \eta \lambda}{1.5}\left(\frac{x}{d}\right)+K=0
$$

Substitute $\alpha_{c c}=0.85$ as decided in Singapore Annex, $\lambda=0.775, \eta=0.95$ for $f_{c k}=60 \mathrm{~N} / \mathrm{mm}^{2}$ shown in Case 1 and $K=0.107$ to the above expression we have

$$
0.162\left(\frac{x}{d}\right)^{2}-0.417\left(\frac{x}{d}\right)+0.107=0
$$

Solving this quadratic equation give $x / d=0.289, x=0.289 \times 540=156 \mathrm{~mm}$ the level arm $z=d-0.5 \lambda x=540-0.5 \times 0.775 \times 156=479.5 \mathrm{~mm}$

$$
A_{s}=\frac{M}{0.87 f_{y k} \mathrm{z}}=\frac{560 \times 10^{6}}{0.87 \times 500 \times 479.5}=2684 \mathrm{~mm}^{2}
$$

Provide $6 \phi 25$ for A_{S}, area $=2945 \mathrm{~mm}^{2}>2684 \mathrm{~mm}^{2}$

Case 4: Design for 20\% moment redistribution, rebar grade B600B to SS 560:2016, using Singapore Annex to EC2

Calculate parameter K

$$
K=M / b d^{2} f_{c k}=560 \times 10^{6} / 300 \times 540^{2} \times 60=0.107
$$

Similar to case 3 above with $K=0.107<K_{b a l}=0.126$, compression reinforcement is not required and $x=156 \mathrm{~mm}$, the level arm $z=479.5 \mathrm{~mm}$

$$
A_{s}=\frac{M}{0.87 f_{y k} \mathrm{z}}=\frac{560 \times 10^{6}}{0.87 \times 600 \times 479.5}=2236 \mathrm{~mm}^{2}
$$

Provide $5 \phi 25$ for A_{S}, area $=2454 \mathrm{~mm}^{2}>2236 \mathrm{~mm}^{2}$

Case 5: Design for 20\% moment redistribution, rebar grade B500B to SS 560:2016, using recommended values of EC2

Using recommended values of EC2 we have parameters $k_{3}=0.54, k_{4}=1.25\left(0.6+0.0014 / \varepsilon_{c u}\right)=$ $1.25(0.6+0.0014 / 0.00288)=1.357$

With 20\% redistribution, from Table 4-5 using recommended values of EC2 we have $\mathrm{x}_{\mathrm{u}} / d=$ 0.192 and $K_{\text {bal }}=0.074$
$K=M / b d^{2} f_{c k}=560 \times 10^{6} / 300 \times 540^{2} \times 60=0.107>K_{b a l}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.192 d=0.192 \times 540=103 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{S c}=\frac{\varepsilon_{c u}\left(x-d^{\prime}\right)}{x}=\frac{0.00288(103-50)}{103}=0.00149<0.00217
$$

thus $f_{s c}<0.87 f_{y k}$
steel compressive stress, $f_{s c}=E_{s} \varepsilon_{s c}=200000 \times 0.00149=298 \mathrm{~N} / \mathrm{mm}^{2}$
Compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)}=\frac{(0.107-0.074) \times 60 \times 300 \times 540^{2}}{298 \times(540-50)}=1175 \mathrm{~mm}^{2}
$$

Try $3 \phi 25$ for A_{s}^{\prime}, area $=1473 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} Z}+A_{s}^{\prime} \frac{f_{s c}}{0.87 f_{y k}}
$$

where $z=d-0.5 \lambda x=540-0.5 \times 0.775 \times 103=500 \mathrm{~mm}$

$$
A_{s}=\frac{0.074 \times 60 \times 300 \times 540^{2}}{0.87 \times 500 \times 500}+1175 \frac{298}{0.87 \times 500}=2591 \mathrm{~mm}^{2}
$$

Try $4 \phi 25$ and $2 \phi 20$ for A_{s}, area $=2592 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=1473-1175=298 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=2592-2591=1 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \Rightarrow \text { ductility is ensured }
\end{gathered}
$$

Case 6: Design for 20\% moment redistribution, rebar grade B600B to SS 560:2016, using recommended values of EC2

Using recommended values of EC2 we have parameters $k_{3}=0.54, k_{4}=1.25\left(0.6+0.0014 / \varepsilon_{c u}\right)=$ $1.25(0.6+0.0014 / 0.00288)=1.357$

With 20\% redistribution, from Table 4-5 using recommended values of EC2 we have $x_{u} / d=$ 0.192 and $K_{\text {bal }}=0.074$
$K=M / b d^{2} f_{c k}=560 \times 10^{6} / 300 \times 540^{2} \times 60=0.107>K_{b a l}$ thus compression reinforcement is needed.

The neutral axis depth $\quad x=0.192 d=0.192 \times 540=103 \mathrm{~mm}$
Steel compressive strain:

$$
\varepsilon_{S c}=\frac{\varepsilon_{c u}\left(x-d^{\prime}\right)}{x}=\frac{0.00288(103-50)}{103}=0.00149<0.00261
$$

thus $f_{s c}<0.87 f_{y k}$
steel compressive stress, $f_{\mathrm{sc}}=E_{\mathrm{s}} \varepsilon_{\mathrm{sc}}=200000 \times 0.00149=298 \mathrm{~N} / \mathrm{mm}^{2}$
Compression steel area:

$$
A_{s}^{\prime}=\frac{\left(K-K_{b a l}\right) f_{c k} b d^{2}}{f_{s c}\left(d-d^{\prime}\right)}=\frac{(0.107-0.074) \times 60 \times 300 \times 540^{2}}{298 \times(540-50)}=1175 \mathrm{~mm}^{2}
$$

Try $3 \phi 25$ for A_{s}^{\prime}, area $=1473 \mathrm{~mm}^{2}$
The tension steel area

$$
A_{s}=\frac{K_{b a l} f_{c k} b d^{2}}{0.87 f_{y k} Z}+A_{s}^{\prime} \frac{f_{s c}}{0.87 f_{y k}}
$$

where $z=d-0.5 \lambda x=540-0.5 \times 0.775 \times 103=500 \mathrm{~mm}$

$$
A_{s}=\frac{0.074 \times 60 \times 300 \times 540^{2}}{0.87 \times 600 \times 500}+1175 \frac{298}{0.87 \times 600}=2159 \mathrm{~mm}^{2}
$$

Try $5 \phi 25$ for A_{s}, area $=2454 \mathrm{~mm}^{2}$
Check

$$
\begin{gathered}
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)=1473-1175=298 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}-A_{s, \text { req }}\right)=2454-2159=295 \mathrm{~mm}^{2} \\
\left(A_{s, \text { prov }}^{\prime}-A_{s, \text { req }}^{\prime}\right)>\left(A_{s, \text { prov }}-A_{s, \text { req }}\right) \quad \gg \text { ductility is ensured }
\end{gathered}
$$

Table 2 Summary of required reinforcement area for the six cases of example 3-2

Rebar	No moment redistribution		20\% Moment redistribution			
			Singapore Annex		Recommended value EC2	
	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
	$f_{y k}=$ 500 $\mathrm{N} / \mathrm{mm} 2$	$f_{y k}=$ 600 N/mm2	$f_{y k}=$ 500 N/mm2	$f_{y k}=$ 600 $\mathrm{N} / \mathrm{mm} 2$	$f_{y k}=$ 500 $\mathrm{N} / \mathrm{mm} 2$	$f_{y k}=$ 600 $\mathrm{N} / \mathrm{mm} 2$
$A_{s, r e q}^{\prime}$	180	180	0	0	1175	1175
$A_{s, r e q}$	3459	2866	2684	2236	2591	2159
$A_{s, p r o v}^{\prime}$	628	628	0	0	1473	1473
$A_{\text {s,prov }}$	3572	2945	2945	2454	2592	2454

Comment: As mentioned earlier in this section, for HSC, using the EC2 recommended parameters to design for moment redistribution would result in higher ductility or rotational capacity compared to those stipulated by UK and Singapore Annex, as a result the former requires more compression reinforcement than the latter as can be seen from Table 2 for the same percentage of moment redistribution. The total reinforcement area after moment redistribution is even higher than before redistribution in case of using EC2 recommended parameters. With the same parameters, a section using higher strength reinforcement requires less tension steel than the one using lower strength reinforcement but the required amount of compression steel remains unchanged. It is necessary to check that the extra amount of reinforcement provided for compression reinforcement compared to the required area shall not be less than that for tension reinforcement to ensure the ductility requirement.

4. Prediction of confinement of concrete using the Eurocode model

Example 4.1. Designing confinement reinforcement required with $f_{c k}=40 \mathrm{MPa}$

For a $500 \mathrm{~mm} \times 500 \mathrm{~mm}$ square concrete column with $f_{c k}=40 \mathrm{MPa}$ to achieve an increment of strain at peak stress of concrete by 0.0005 , i.e $\varepsilon_{c 2, c}-\varepsilon_{c 2}=0.5 \%$, for two cases using Grade B500 and Grade B600 reinforcement. Assuming concrete cover to the link is 30 mm and column is reinforced with 8 H 25 as shown in Figure 6

Figure 6 Illustration of Example 4.1

Case 1. Using Grade B500 ($f_{y w}=500 \mathrm{MPa}$) for transverse reinforcement.
Use 10 mm diameter reinforcement for the perimeter link and diagonal hoop ($A_{s}=78.54 \mathrm{~mm}^{2}$). The dimension of core concrete will be

$$
b_{0}=h_{0}=500-2 \times 30-10=430 \mathrm{~mm}
$$

The distance between consecutive engaged bars b_{i} will be the same around 4 sides and can be computed as

$$
b_{i}=(430-10-25) / 2=197.5 \mathrm{~mm}
$$

the ratio of volume of transverse reinforcement to the volume of core concrete will be estimated as

$$
\rho_{s x}=4 b_{0}\left(1+\frac{\sqrt{2}}{2}\right) \mathrm{A}_{s} /\left(b_{0}^{2} s\right)=1.247 / s
$$

where s is the spacing of transverse reinforcement in mm, A_{s} is cross section area of transverse reinforcement ($A_{s}=78.54 \mathrm{~mm}^{2}$)

From Equation 4-31 we have

$$
\alpha=\left(1-\frac{s}{2 b_{0}}\right)^{2}\left(1-\frac{\sum b_{i}^{2}}{6 b_{0}^{2}}\right)=0.719\left(1-\frac{s}{860}\right)^{2}
$$

First, assuming $\sigma_{2}<0.05 f_{c k}$, from Equation 4-28 and Equation 4-29 we have

$$
\varepsilon_{c 2, c}=\varepsilon_{c 2}\left(1.000+5.0 \sigma_{2} / f_{c k}\right)^{2}
$$

the requirement is $\varepsilon_{c 2, c}-\varepsilon_{c 2}=0.5 \%$ thus we can write

$$
\varepsilon_{c 2}\left[\left(1.000+5.0 \sigma_{2} / f_{c k}\right)^{2}-1\right]=0.5 \%
$$

From Table 3.1 of EC 2 , with $f_{c k}=40 \mathrm{MPa}$ we have $\varepsilon_{c 2}=2 \%$, hence

$$
2 \%\left[\left(1.000+5.0 \sigma_{2} / 40\right)^{2}-1\right]=0.5 \%
$$

Solving this quadratic equation gives $\sigma_{2}=\sqrt{80}-8=0.944 \mathrm{MPa}$.
Check against assumption $\sigma_{2}=0.944 \mathrm{MPa}<0.05 f_{\mathrm{ck}}=2.0 \mathrm{MPa}->$ Satisfied
Replacing the parameters $\sigma_{2}, \rho_{s x}, \alpha$ and $f_{y w}=500 \mathrm{MPa}$ into Equation 4-30 we have

$$
0.944=0.719\left(1-\frac{s}{860}\right)^{2} \frac{1.247}{s}(500)
$$

This is a quadratic equation that gives $s=243 \mathrm{~mm}$ and a volumetric ratio $\rho_{s x}=1.247 / s=0.51 \%$.

Case 2. Using Grade B600 ($f_{y w}=600 \mathrm{MPa}$) for transverse reinforcement.

The parameters $\sigma_{2}, \rho_{s x}$, α are similar to Case 1, thus we have equation for spacing s as

$$
0.944=0.719\left(1-\frac{s}{860}\right)^{2} \frac{1.247}{s}(600)
$$

solving this quadratic equation gives $s=269 \mathrm{~mm}$ and a volumetric ratio $\rho_{s x}=1.247 / s=0.46 \%$.
Example 4.2. Designing confinement reinforcement required with $f_{c k}=80 \mathrm{MPa}$
Similar to example 4.1 but the column uses high strength concrete $f_{c k}=80 \mathrm{MPa}$.
From Table 3.1 of EC 2 , for $f_{c k}=80 \mathrm{MPa}$ we get $\varepsilon_{c 2}=2.5 \%$, thus the requirement for confinement can be written as

$$
2.5 \%\left[\left(1.0+5.0 \sigma_{2} / 80\right)^{2}-1\right]=0.5 \%
$$

Solving this quadratic equation gives $\sigma_{2}=1.53 \mathrm{MPa}<0.05 f_{c k}=4 \mathrm{MPa}$
Substitute this effective lateral compressive stress for Case 1 and Case 2 of example 4.1, the required spacing of transverse reinforcement for Case 1 would be $s=182 \mathrm{~mm}\left(\rho_{s x}=0.69 \%\right)$ and for Case 2 would be $s=204 \mathrm{~mm}$ ($\rho_{s x}=0.61 \%$).

Example 4.3. Designing confinement reinforcement as circular hoops, $f_{c k}=40 \mathrm{MPa}$

For a 500 mm diameter circular concrete column with $f_{c k}=40 \mathrm{MPa}$ to achieve an increment of strain at peak stress of concrete by 0.0005 , i.e $\varepsilon_{c 2, c}-\varepsilon_{c 2}=0.5 \%$, for two cases using Grade B500 and Grade B600 reinforcement. Assuming concrete cover to the link is 30 mm and column is reinforced with 8 H 25 as shown in Figure 7.

Figure 7 Illustration of Example 4.3

Case 1. Using Grade B500 ($f_{y w}=500 \mathrm{MPa}$) for transverse reinforcement.

Use 10 mm diameter reinforcement for the circular hoop $\left(A_{s}=78.54 \mathrm{~mm}^{2}\right)$. The diameter of core concrete will be

$$
D_{0}=500-2 \times 30-10=430 \mathrm{~mm}
$$

the ratio of volume of transverse reinforcement to the volume of core concrete will be estimated as

$$
\rho_{s x}=\pi D_{o} A_{s} /\left(\pi D_{o}^{2} s / 4\right)=0.73 / s
$$

where s is the spacing of transverse reinforcement in mm
From Equation 4-32 we have

$$
\alpha=\left(1-\frac{s}{2 D_{0}}\right)^{2}=\left(1-\frac{s}{860}\right)^{2}
$$

Similar to example 4.1, with $f_{c k}=40 \mathrm{MPa}, \varepsilon_{c 2}=2 \%$ we need an effective lateral compressive stress $\sigma_{2}=0.944 \mathrm{MPa}$, replacing the parameters $\sigma_{2}, \rho_{s x}, \alpha$ and $f_{y w}=500 \mathrm{MPa}$ to Equation 4-30 we have

$$
0.944=\left(1-\frac{s}{860}\right)^{2} \frac{0.73}{s}(500)
$$

This is a quadratic equation that gives $s=216 \mathrm{~mm}$ and a volumetric ratio $\rho_{s x}=0.73 / \mathrm{s}=0.34 \%$.

Case 2. Using Grade B600 ($f_{y w}=600 \mathrm{MPa}$) for transverse reinforcement.

the parameters $\sigma_{2}, \rho_{s x}, \alpha$ are similar to Case 1, thus we have equation for spacing s as

$$
0.944=\left(1-\frac{s}{860}\right)^{2} \frac{0.73}{s}(600)
$$

solving this quadratic equation gives $s=240 \mathrm{~mm}$ and a volumetric ratio $\rho_{s x}=0.73 / s=0.30 \%$
Example 4.4. Designing confinement reinforcement as circular hoops, $f_{c k}=80 \mathrm{MPa}$
Similar to example 4.3 but the column use high strength concrete $f_{c k}=80 \mathrm{MPa}$.

The effective lateral compressive stress is already determined in Example 4.2

$$
\sigma_{2}=1.53 \mathrm{MPa}
$$

Substitute this effective lateral compressive stress for Case 1 and Case 2 of Example 4.3, the required spacing of transverse reinforcement for Case 1 would be $s=159 \mathrm{~mm}$ ($\rho_{s x}=0.46 \%$) and for Case 2 would be $s=179 \mathrm{~mm}$ ($\rho_{s x}=0.41 \%$).

5. Estimation of confining reinforcement amount to utilize the high strength reinforcement based on confinement mechanism given in EC2

Example 5.1: $f_{c k}=40 \mathrm{MPa} f_{\text {yk }}=600 \mathrm{MPa}$

Consider columns with square section subjected to concentric loading, given nominal concrete cover to the link is 30 mm , diameter of the link is 10 mm and the yield strength of the link $f_{y w}=500$ MPa , concrete strength $f_{c k}=40 \mathrm{MPa}$, assuming yield strength of longitudinal reinforcement is $f_{y k}$ $=600 \mathrm{MPa}$ and the ratio $\rho_{\mathrm{s}}=1 \%$, assuming the link include a perimeter hoop and n internal ties in each direction.

Fixed parameters: $\mathrm{c}=30 \mathrm{~mm}, f_{c k}=40 \mathrm{MPa}, \mathrm{ds}=10 \mathrm{~mm}, f_{y w}=500 \mathrm{MPa}, f_{y k}=600 \mathrm{MPa}\left(\varepsilon_{y k d}=2.61 \%\right)$, $\rho_{s}=1 \%$

The required amount of transverse steel ratios for various column size to utilize design yield strength of reinforcement can be computed from Equation 4-37 to Equation 4-41, the results are as follows:

$\begin{gathered} b \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & b_{0} \\ & (\mathrm{~mm}) \end{aligned}$	$f_{c k}$ (MPa)	$\begin{aligned} & \mathcal{E}_{\mathrm{c} 2} \\ & (\% \circ) \end{aligned}$	required $f_{\text {ck, c }}$ (MPa)	$\begin{aligned} & \varepsilon_{c 2, c} \\ & (\% \text {) } \end{aligned}$	σ_{2} (MPa)	n	$\begin{aligned} & s \\ & (\mathrm{~mm}) \end{aligned}$	$\rho_{\text {sh }}$
300	230	40	2.00	64.82	5.25	12.85	1	44	5.35\%
400	330	40	2.00	55.85	3.90	6.06	1	64	2.54\%
500	430	40	2.00	51.33	3.29	3.25	2	127	0.98\%
600	530	40	2.00	48.62	2.95	2.10	2	159	0.64\%
700	630	40	2.00	46.81	2.74	1.60	3	221	0.38\%
800	730	40	2.00	45.68	2.61	1.30	4	281	0.26\%
900	830	40	2.00	45.68	2.61	1.30	4	267	0.24\%
1000	930	40	2.00	45.68	2.61	1.30	5	289	0.20\%
1200	1130	40	2.00	45.68	2.61	1.30	6	293	0.16\%

It can be noted that the lost of concrete cover has lesser effect to columns with bigger size. For small size such as $300 \times 300 \mathrm{~mm}$ the required volumetric ratios of transverse reinforcement of
5.35% is too high and not practical. For a size greater than 700×700, the required confined concrete strength is governed by the required design yield strength of rebar $\varepsilon_{c 2, c}=\varepsilon_{y k d}$.

In case of High strength concrete, similar to the above example but using $f_{c k}=80 \mathrm{MPa}$ we can compute the required amount of transverse steel ratios as follows:

b $(\mathrm{~mm})$	b_{0} $(\mathrm{~mm})$	$f_{c k}$ (MPa)	$\varepsilon_{c 2}$ $(\%)$	required $f_{c k, c}$ (MPa)	$\varepsilon_{c 2, c}$ $(\%)$	σ_{2} (MPa)	n $(\mathrm{~mm})$	s $(\% \mathrm{mh}$	
300	230	80	2.52	136.51	7.32	31.744	1	20	11.83%
400	330	80	2.52	117.61	5.44	16.235	1	27	6.03%
500	430	80	2.52	108.10	4.59	9.784	2	51	2.43%
600	530	80	2.52	102.39	4.12	6.345	2	64	1.58%
700	630	80	2.52	98.59	3.82	4.234	3	103	0.82%
800	730	80	2.52	95.87	3.61	3.805	4	123	0.60%
900	830	80	2.52	93.84	3.46	3.247	4	129	0.50%
1000	930	80	2.52	92.26	3.35	2.827	5	156	0.37%
1200	1130	80	2.52	89.96	3.18	2.240	6	189	0.25%

The required confined concrete strength is governed by the capacity of column at maximum unconfined concrete strength with $\varepsilon_{c 2, c}$ always higher than $\varepsilon_{y k d}$ for $f_{y}=600 \mathrm{MPa}$. For those columns that have size smaller than 500×500 the required volumetric ratios of transverse reinforcement of 6.03% or more are too high and not practical.

Example 5.2 : $f_{c k}=80 \mathrm{MPa} f_{y k}=600 \mathrm{MPa}$
Consider columns with circular section confined by circular hoop subjected to concentric loading, given nominal concrete cover to the link is 30 mm , diameter of the link is 10 mm and the yield strength of the link $f_{y w}=500 \mathrm{MPa}$, concrete strength $f_{c k}=80 \mathrm{MPa}$, assuming yield strength of longitudinal reinforcement is $f_{y}=600 \mathrm{MPa}$ and the ratio $\rho_{s}=1 \%$, assuming the link include a perimeter hoop and n internal ties in each direction

Fixed parameters: $c=30 \mathrm{~mm}, f_{c k}=80 \mathrm{MPa}, d_{s}=10 \mathrm{~mm}, f_{y \mathrm{yw}}=500 \mathrm{MPa}, f_{y}=600 \mathrm{MPa}\left(\varepsilon_{y}=2.61 \%\right)$, $\rho_{\mathrm{s}}=1 \%$

D $(\mathrm{~mm})$	D_{0} $(\mathrm{~mm})$	$f_{c k}$ (MPa)	$\varepsilon_{c 2}$ $(\%)$	required $f_{c k, c}$ (MPa)	$\varepsilon_{c 2, c}$ $(\%)$	σ_{2} (MPa)	s $(\mathrm{~mm})$	$\rho_{s h}$
300	230	80	2.52	136.51	7.32	31.744	20	11.83%
400	330	80	2.52	117.61	5.44	16.235	27	6.03%
500	430	80	2.52	108.10	4.59	9.784	51	2.43%
600	530	80	2.52	102.39	4.12	6.345	64	1.58%
700	630	80	2.52	98.59	3.82	4.234	103	0.82%
800	730	80	2.52	95.87	3.61	3.805	123	0.60%
900	830	80	2.52	93.84	3.46	3.247	129	0.50%
1000	930	80	2.52	92.26	3.35	2.827	156	0.37%
1200	1130	80	2.52	89.96	3.18	2.240	189	0.25%

The required amount of transverse steel ratios for various column diameters can be computed from Equation 4-42 to Equation 4-45, the results are as follows:

It can also be seen that for those columns that have size less than D500 the required volumetric ratios of transverse reinforcement of 6.03% or more is too high and not practical.

6. Effect of creep and shrinkage on load redistribution in columns

Example 6.1: $f_{y}=600 \mathrm{MPa}$, concrete grade $\mathrm{C} 30 / 37$ using cement class N
Given a 500×500 RC column, reinforced with 12 nos of $\mathrm{H} 20 \operatorname{rebar}\left(A_{s}=3770 \mathrm{~mm}^{2}, \rho_{s}=1.5 \%\right.$) with $f_{y}=600 \mathrm{MPa}$ and $E_{s}=200 \mathrm{GPa}$, concrete grade C30/37 using cement class N , subjected to concentrate sustained loading equal to 50% of the design ultimate axial capacity at 28 days after casting of concrete. The concrete were cured for 5 days and the working environment after curing has the Relative Humidity $\mathrm{RH}=70 \%$. Determine the total strain and the redistribution of stress from concrete to the reinforcement at the age of two years (730 days), considering additional strain from shrinkage of concrete.

For concrete grade $\mathrm{C} 30 / 37$ the strain at maximum stress may be assumed to follow Table 3.1 and Figure 3.3 of $E C 2$ which give $\varepsilon_{c 2}=0.002$ less than strain at design yield strength of rebar, thus the design ultimate axial capacity of the column is

$$
\begin{aligned}
& P_{u D}=0.85 f_{c k} A_{c} / \gamma_{c}+\varepsilon_{c 2} E_{s} A_{s} \\
& P_{u D}=\left[0.85 \times 30(500 \times 500-3770) / 1.5+0.002 \times 2 \times 10^{5} \times 3770\right] / 1000=5694 \mathrm{kN}
\end{aligned}
$$

The sustained loading $P=0.5 P_{u D}=0.5 \times 5694=2847 \mathrm{kN}$

- Effect of creep:

Since the column is loaded at 28 days, the concrete strength at time of loading is equal to $f_{c k}\left(t_{0}\right)$ $=30 \mathrm{MPa}$ and the mean compressive strength of concrete $f_{c m}\left(t_{0}\right)=38 \mathrm{MPa}$

- Concrete strength coefficients:

$$
\alpha_{1}=\left(35 / f_{c m}\right)^{0.7}=0.944 ; \quad \alpha_{2}=\left(35 / f_{c m}\right)^{0.2}=0.984 ; \quad \alpha_{3}=\left(35 / f_{c m}\right)^{0.5}=0.960
$$

- Humidity factor:

Notional size of column: $\quad h_{0}=2 A_{c} / u=250 \mathrm{~mm}$

$$
\text { since } f_{c m}=38>35, \varphi_{R H}=\left[1+\frac{1+R H / 100}{0.1 \sqrt[3]{h_{0}}} \alpha_{1}\right] \alpha_{2}=1.426
$$

- Concrete strength factor:

$$
\beta\left(f_{c m}\right)=\frac{16.8}{\sqrt{f_{c m}}}=2.725
$$

- Concrete age factor:

$$
\beta\left(t_{0}\right)=\frac{1}{0.1+t_{0}^{0.20}}=0.488
$$

- Notional creep coefficient:

$$
\varphi_{0}=\varphi_{\text {Rн }} \cdot \beta\left(f_{c m}\right) \cdot \beta\left(t_{0}\right)=1.426 \times 2.725 \times 0.488=1.898
$$

- Relative humidity coefficient:
for $f_{c m}>35 \mathrm{MPa}$ we have $\beta_{\mathrm{H}}=1.5\left[1+(0.012 R H)^{18}\right] h_{O}+250 \alpha_{3}=631$

$$
\beta_{\mathrm{H}} \leq 1500 \alpha_{3} \quad=1439.57, \mathrm{OK}
$$

- Creep development coefficient:

$$
\beta_{\mathrm{c}}\left(t, t_{0}\right)=\left[\frac{t-t_{0}}{\beta_{H}+t-t_{0}}\right]^{0.3}=0.825
$$

The creep coefficient for 2 years age ($t=730$ days) and loading at 28 days age ($t_{0}=28$) is:

$$
\varphi\left(t, t_{0}\right)=\varphi_{0} . \beta_{c}\left(t, t_{0}\right)=1.898 \times 0.825=1.566
$$

For iteration calculation of creep strain, the first step is to calculate the initial parameters as follows:

- Tangent modulus of concrete: $E_{c}=1.05 E_{c m}=1.05 \times 22\left(f_{c m} / 10\right)^{0.3}=34.48 \mathrm{GPa}$
- Initial modular ratio: $\quad \alpha_{\mathrm{e}}=E_{s} / E_{c}=200 / 34.48=5.80$
- Concrete stress at the time of applying load t_{0} (at 28 days):

$$
\sigma_{0}=\frac{N}{A_{c}+\alpha_{e} A_{s}}=10.62 \mathrm{MPa}
$$

since $\sigma_{0}<0.45 f_{c k}\left(t_{0}\right)=0.45 \times 30=13.5 \mathrm{MPa}$ creep non-linearity need not be considered.

- Rebar stress at the time of applying load t_{0} :

$$
\sigma_{\mathrm{s} 0}=\alpha_{\mathrm{e}} \sigma_{0}=5.80 \times 10.62=61.60 \mathrm{MPa}
$$

- Short-term elastic strain of concrete

$$
\varepsilon_{0}=\sigma_{0} / E_{c}=10.62 / 34.48 \times 10^{3}=0.000308
$$

After two years, at first iteration assuming the concrete is subject to the initial stress σ_{0} then the creep strain can be estimated as

$$
\varepsilon_{c c 1}\left(t, t_{0}\right)=\varphi\left(t, t_{0}\right) \cdot\left(\sigma_{0} / E_{c}\right)=1.566 \times 0.000308=0.000482
$$

and the total strain will be

$$
\varepsilon_{c 1}=\varepsilon_{0}+\varepsilon_{c c 1}\left(t, t_{0}\right)=0.000308+0.000482=0.00079
$$

However due to the increase of strain, the effective modulus of concrete will be reduced to

$$
E_{c e 1}=\sigma_{0} / \varepsilon_{c 1}=10.62 / 0.00079=13437 \mathrm{MPa}=13.437 \mathrm{GPa}
$$

the effective modular ratio will be increased to

$$
\alpha_{e 1}^{\prime}=E_{s} / E_{c e 1}=200 / 13.437=14.88
$$

consequently the concrete stress will be reduced to

$$
\sigma_{\mathrm{c} 1}=\frac{N}{A_{c}+\alpha_{e}^{\prime} A_{s}}=9.42 \mathrm{MPa}
$$

As $\sigma_{c 1}<\sigma_{0}$ we need to repeat the iteration by substitute $\sigma_{c 1}$ to σ_{0} in the first step and repeat this process which yields the following result:
step 2:
$\varepsilon_{c c 2}=0.000428 ; \quad \varepsilon_{c 2}=0.000736 ; \quad E_{c e 2}=12.80 \mathrm{GPa} ; \quad \alpha_{e 2}^{\prime}=15.62 ; \quad \sigma_{c 2}=9.33 \mathrm{MPa}$
step 3:
$\varepsilon_{c c 3}=0.000424 ; \quad \varepsilon_{c 3}=0.000732 ; \quad E_{c e 3}=12.75 \mathrm{GPa} ; \quad \alpha_{e 3}^{\prime}=15.69 ; \quad \sigma_{c 3}=9.32 \mathrm{MPa}$
The error between results from step 3 and step 2 is less than 1% so we can stop at step 3. From this analysis, the additional compressive strain that the rebar has to take from the creep effect is 0.000424 after two years.

- Effect of shrinkage

Since the column is under compression, the shrinkage of concrete is only restrained internally by the rebar.

The nominal unrestrained drying shrinkage value $\varepsilon_{c d, o}$ can be computed from Appendix B or interpolated from Table 3.2 of SS EN 1992-1-1 for $R H=70$, cement type N and $f_{c k}=30 \mathrm{MPa}$, which gives $\varepsilon_{c d, 0}=0.00036$. Interpolated from Table 3.3 of the code with $h_{0}=250$ as computed earlier gives $k_{h}=0.80$.

The age of the concrete at the beginning of drying shrinkage is taken at the end of curing time, thus $t_{s}=5$ days, at the moment considered, $t=730$ days, we have

$$
\beta_{s d}\left(t, t_{s}\right)=\frac{\left(t-t_{s}\right)}{\left(t-t_{s}\right)+0.04 \sqrt{h_{0}^{3}}}=0.82
$$

The total drying shrinkage value at 730 days can be determined as

$$
\varepsilon_{c d}(t)=\beta_{\mathrm{ds}}\left(t, t_{s}\right) \cdot k_{h} \cdot \varepsilon_{c d, o}=0.82 \times 0.80 \times 0.00036=0.000238
$$

The autogenous shrinkage strain can be estimated at time $t=730$ days as

$$
\begin{aligned}
& \varepsilon_{c a}(\infty)=2.5\left(f_{c \mathrm{k}}-10\right) 10^{-6}=2.5(30-10) 10^{-6}=0.00005 \\
& \beta_{\mathrm{as}}(t)=1-\exp \left(-0.2 t^{0.5}\right)=1-\exp \left(-0.2 \times(730)^{0.5}\right)=0.996 \\
& \varepsilon_{c a}(t)=\beta_{\mathrm{as}}(t) \varepsilon_{c a}(\infty)=0.00005
\end{aligned}
$$

Total free shrinkage strain of concrete at time $t=730$ days is

$$
\varepsilon_{c s}=\varepsilon_{c d}+\varepsilon_{c a}=0.000238+0.00005=0.000288
$$

For concrete $f_{c k}=30 \mathrm{MPa}$, the modulus of elasticity of concrete is $E_{c m}=32.84 \mathrm{GPa}$, for steel $E_{s}=$ 200 GPa
thus the ratio $\alpha_{e}=E_{s} / E_{c m}=200 / 33=6.09$
The additional compressive strain in the rebar can be estimated as

$$
\varepsilon_{S C}=\frac{\varepsilon_{C S}}{1+\frac{\alpha_{e} A_{S}}{A_{c}}}=0.000263
$$

Summary: The combined effects of creep and shrinkage produce an additional compressive strain in the reinforcement of $0.000424+0.000263=0.000687$. This strain combined with the strain due to external force at ultimate limit state of 0.002 given in EC2, will exceed the design yield strength of the B600 rebar.

Example 6.2 : $f_{y}=600 \mathrm{MPa}$, concrete grade C70/85 using cement class N

Given a 500×500 RC column, reinforced with 12 nos of H 20 rebar ($A_{s}=3770 \mathrm{~mm}^{2}, \rho_{s}=1.5 \%$) with $f_{y}=600 \mathrm{MPa}$ and $E_{s}=200 \mathrm{GPa}$, concrete class C70/85 using cement class N , subjected to concentrate sustained loading equal to 50% of the design ultimate axial capacity at 28 days after casting of concrete. The concrete were cured for 5 days and the working environment after curing has the Relative Humidity $\mathrm{RH}=70 \%$. Determine the total strain and the redistribution of stress from concrete to the reinforcement at the age of two years (730 days), considering additional strain from shrinkage of concrete.

For concrete class C70/85 the strain at maximum stress is $\varepsilon_{c 2}=0.0024$ less than the strain at design yield strength of rebar (0.0026), thus the design ultimate axial capacity of the column is

$$
P_{u D}=0.85 f_{c k} A_{c} / \gamma_{c}+\varepsilon_{c 2} E_{s} A_{s}
$$

$$
P_{u D}=\left[0.85 \times 70(500 \times 500-5890) / 1.5+0.0024 \times 2 \times 10^{5} \times 3770\right] / 1000=11577 \mathrm{kN}
$$

The sustained loading $P=0.5 P_{u D}=0.5 \times 11577=5788 \mathrm{kN}$

- Effect of creep:

Since the column is loaded at 28 days, the concrete strength at time of loading is equal to $f_{c k}\left(t_{0}\right)$
$=70 \mathrm{MPa}$ and the mean compressive strength of concrete $f_{c m}\left(t_{0}\right)=78 \mathrm{MPa}$

- Concrete strength coefficients:

$$
\alpha_{1}=\left(35 / f_{c m}\right)^{0.7}=0.571 ; \quad \alpha_{2}=\left(35 / f_{c m}\right)^{0.2}=0.852 ; \quad \alpha_{3}=\left(35 / f_{c m}\right)^{0.5}=0.670
$$

- Humidity factor:

Notional size of column: $\quad h_{0}=2 A_{c} / u=250 \mathrm{~mm}$

$$
\text { since } f_{c m}=78>35, \varphi_{R H}=\left[1+\frac{1+R H / 100}{0.1 \sqrt[3]{h_{0}}} \alpha_{1}\right] \alpha_{2}=1.083
$$

- Concrete strength factor:

$$
\beta\left(f_{c m}\right)=\frac{16.8}{\sqrt{f_{c m}}}=1.902
$$

- Concrete age factor:

$$
\beta\left(t_{0}\right)=\frac{1}{0.1+t_{0}^{0.20}}=0.488
$$

- Notional creep coefficient:

$$
\varphi_{0}=\varphi_{\text {Rн }} \cdot \beta\left(f_{c m}\right) \cdot \beta\left(t_{0}\right)=1.083 \times 1.902 \times 0.488=1.007
$$

- Relative humidity coefficient:
for $f_{c m}>35 \mathrm{MPa}$ we have $\beta_{\mathrm{H}}=1.5\left[1+(0.012 R H)^{18}\right] h_{0}+250 \alpha_{3}=558.72$

$$
\beta_{\mathrm{H}} \leq 1500 \alpha_{3} \quad=1004.8, \mathrm{OK}
$$

- Creep development coefficient:

$$
\beta_{\mathrm{c}}\left(t, t_{0}\right)=\left[\frac{t-t_{0}}{\beta_{H}+t-t_{0}}\right]^{0.3}=0.839
$$

The creep coefficient for 2 years age ($t=730$ days) and loading at 28 days age ($t_{0}=28$) is:

$$
\varphi\left(t, t_{0}\right)=\varphi_{0} . \beta_{c}\left(t, t_{0}\right)=1.007 \times 0.839=0.844
$$

For iteration calculation of creep strain, the first step is to calculate the initial parameters as follows:

- Tangent modulus of concrete: $E_{c}=1.05 E_{c m}=1.05 \times 22\left(f_{c m} / 10\right)^{0.3}=42.78 \mathrm{GPa}$
- Initial modular ratio:

$$
\alpha_{\mathrm{e}}=E_{s} / E_{c}=200 / 42.78=4.68
$$

- Concrete stress at the time of applying load t_{0} (at 28 days):

$$
\sigma_{0}=\frac{N}{A_{c}+\alpha_{e} A_{s}}=21.94 \mathrm{MPa}
$$

since $\sigma_{0}<0.45 f_{c k}\left(t_{0}\right)=0.45 \times 70=31.5 \mathrm{MPa}$ creep non-linearity need not be considered.

- Rebar stress at the time of applying load t_{0} :

$$
\sigma_{\mathrm{s} 0}=\alpha_{\mathrm{e}} \sigma_{0}=4.68 \times 21.94=102.56 \mathrm{MPa}
$$

- Short-term elastic strain of concrete

$$
\varepsilon_{0}=\sigma_{0} / E_{c}=21.94 / 42.78 \times 10^{3}=0.000513
$$

After two years, at first iteration assuming the concrete is subject to the initial stress σ_{0} then the creep strain can be estimated as

$$
\varepsilon_{c c 1}\left(t, t_{0}\right)=\varphi\left(t, t_{0}\right) \cdot\left(\sigma_{0} / E_{c}\right)=0.844 \times 0.000513=0.000433
$$

and the total strain will be

$$
\varepsilon_{c 1}=\varepsilon_{0}+\varepsilon_{c c 1}\left(t, t_{0}\right)=0.000513+0.000433=0.000946
$$

However due to the increase of strain, the effective modulus of concrete will be reduced to

$$
E_{c e 1}=\sigma_{0} / \varepsilon_{c 1}=21.94 / 0.000946=23.193 \mathrm{MPa}=23.193 \mathrm{GPa}
$$

the effective modular ratio will be increased to

$$
\alpha_{e 1}^{\prime}=E_{s} / E_{c e 1}=200 / 23.193=8.62
$$

consequently the concrete stress will be reduced to

$$
\sigma_{\mathrm{c} 1}=\frac{N}{A_{c}+\alpha_{e}^{\prime} A_{s}}=20.77 \mathrm{MPa}
$$

As $\sigma_{c 1}<\sigma_{0}$ we need to repeat the iteration by substitute $\sigma_{c 1}$ to σ_{0} in the first step and repeat this process which yields the following result:
step 2:
$\varepsilon_{c c 2}=0.00041 ; \quad \varepsilon_{c 2}=0.000923 ; \quad E_{c e 2}=22.507 \mathrm{GPa} ; \quad \alpha_{e 2}^{\prime}=8.89 ; \quad \sigma_{c 2}=20.69 \mathrm{MPa}$
step 3:
$\varepsilon_{c c 3}=0.000408 ; \quad \varepsilon_{c 3}=0.000921 ; \quad E_{c e 3}=22.453 \mathrm{GPa} ; \quad \alpha_{e 3}^{\prime}=8.907 ; \quad \sigma_{c 3}=20.69 \mathrm{MPa}$
The error between results from step 3 and step 2 is less than 1% so we can stop at step 3. From this analysis, the additional compressive strain that the rebar has to take from the creep effect is 0.000408 after two years.

- Effect of shrinkage

Since the column is under compression, the shrinkage of concrete is only restrained internally by the rebar.

The nominal unrestrained drying shrinkage value $\varepsilon_{c d, 0}$ can be computed from Appendix B or interpolated from Table 3.2 of SS EN 1992-1-1 for $R H=70 \%$, cement type N and $f_{c k}=70 \mathrm{MPa}$,
which gives $\varepsilon_{c d, 0}=0.000224$. Interpolated from Table 3.3 of the code with $h_{0}=250$ as computed earlier gives $k_{h}=0.80$.

The age of the concrete at the beginning of drying shrinkage is taken at the end of curing time, thus $t_{s}=5$ days, at the moment considered, $t=730$ days, we have

$$
\beta_{s d}\left(t, t_{s}\right)=\frac{\left(t-t_{s}\right)}{\left(t-t_{s}\right)+0.04 \sqrt{h_{0}^{3}}}=0.82
$$

The total drying shrinkage value at 730 days can be determined as

$$
\varepsilon_{c d}(t)=\beta_{\mathrm{ds}}\left(t, t_{s}\right) \cdot k_{h} \cdot \varepsilon_{c d, 0}=0.82 \times 0.80 \times 0.000224=0.000147
$$

The autogenous shrinkage strain can be estimated at time $t=730$ days as

$$
\begin{aligned}
& \varepsilon_{c a}(\infty)=2.5\left(f_{c \mathrm{k}}-10\right) 10^{-6}=2.5(70-10) 10^{-6}=0.000150 \\
& \beta_{\mathrm{as}}(t)=1-\exp \left(-0.2 t^{0.5}\right)=1-\exp \left(-0.2 \times(730)^{0.5}\right)=0.996 \\
& \varepsilon_{c a}(t)=\beta_{\mathrm{as}}(t) \varepsilon_{c a}(\infty)=0.000149
\end{aligned}
$$

Total free shrinkage strain of concrete at time $t=730$ days is

$$
\varepsilon_{c s}=\varepsilon_{c d}+\varepsilon_{c a}=0.000147+0.000149=0.000296
$$

For concrete $f_{c k}=70 \mathrm{MPa}$, the modulus of elasticity of concrete is $E_{c m}=40.74 \mathrm{GPa}$, for steel $E_{s}=$ 200 GPa
thus the ratio $\alpha_{e}=E_{s} / E_{c m}=200 / 40.74=4.91$
The additional compressive strain in the rebar from shrinkage effect can be estimated as

$$
\varepsilon_{S C}=\frac{\varepsilon_{C S}}{1+\frac{\alpha_{e} A_{S}}{A_{c}}}=0.000276
$$

Summary: The combined effects of creep and shrinkage produce an additional compressive strain in the reinforcement of $0.000408+0.000276=0.000684$. This strain combined with the strain due to external force at ultimate limit state of 0.0024 given in EC2, will exceed the design yield strength of the B600.

Building and Construction
 Authority

We shape a safe, high quality, sustainable and friendly built environment.

